МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ульяновский государственный аграрный университет имени П. А. Столыпина»

На правах рукописи

ОСТИН ВЛАДИМИР НИКОЛАЕВИЧ

ПРИЕМЫ ВОЗДЕЛЫВАНИЯ ОЗИМОЙ ПШЕНИЦЫ В ЗВЕНЬЯХ СЕВООБОРОТОВ ЛЕСОСТЕПНОЙ ЗОНЫ СРЕДНЕГО ПОВОЛЖЬЯ

06.01.01 – общее земледелие, растениеводство

Диссертация на соискание ученой степени кандидата сельскохозяйственных наук

Научный руководитель: доктор сельскохозяйственных наук, доцент

Тойгильдин Александр Леонидович

Оглавление

Введение
Глава 1. Основные элементы агротехнологии озимой пшеницы в звене
севооборота в условиях лесостепи Среднего Поволжья
1.1. Предшественники в формировании урожая озимой пшеницы
1.2. Влияние обработки почвы на плодородие почвы и урожайность
озимой пшеницы
1.3. Защита растений от вредных организмов в агротехнологиях озимой
пшеницы 26
Глава 2. Почвенно-климатические условия и методика проведения
исследований
2.1. Почвенный покров опытного участка и его агрохимические
характеристики
2.2. Метеорологические наблюдения в годы исследований
2.3. Схема полевых опытов и их обоснование
2.4. Методика проведения наблюдений, учетов и анализов
Глава 3. Плодородие почвы и фитосанитарное состояние посевов озимой
пшеницы в звене севооборота
3.1 Плотность почвы
3.2. Динамика содержания продуктивной влаги и водопотребление
сельскохозяйственных культур
3.3. Накопление биогенных ресурсов и режим органического вещества
почвы в звеньях севооборотов
3.4. Фитосанитарное состояние посевов озимой пшеницы
Глава 4. Формирование урожая сельскохозяйственных культур в звеньях
севооборотов
4.1. Структура посевов озимой пшеницы
4.2. Продуктивность масличных культур в звеньях севооборотов с озимой
пшеницей

4.3. Урожайность и качество зерна озимой пшеницы	86
4.4. Сравнительная продуктивность звеньев севооборотов	100
Глава 5. Экономическая, агро- и биоэнергетическая эффективност	Г Ь
возделывания полевых культур в звеньях севооборотов	103
5.1. Экономическая эффективность возделывания полевых культур	103
5.2. Агро- и биоэнергетическая эффективность возделывания полевы	ΙX
культур	106
Заключение	113
Библиографический список	117
Приложения	151

Введение

Актуальность темы.

В Среднем Поволжье ведущее место в структуре посевных площадей зерновых культур и в валовых сборах зерна принадлежит озимой пшенице. Размещение озимой пшеницы по предшественникам решается в каждой природно-климатической зоне по-разному.

В условиях недостаточной влагообеспеченности озимая пшеница в основном размещается по чистым парам, что обусловлено, прежде всего, преимуществом данного предшественника в сохранении продуктивной влаги в посевном слое почвы и другими причинами [11, 12, 63, 71, 72, 74].

Однако известно, что чистый пар наряду с преимуществами имеет ряд экологических недостатков, прежде всего нарушение баланса органического вещества почвы и эрозия почвы, снижение экономической эффективности производства [4, 16, 27, 118, 144, 185, 186].

Вследствие такой неоднозначности обозначенная проблема постоянно сопровождается дискуссиями о целесообразности включения чистого пара, его долевом участии в севооборотах в условиях интенсификации и экологизации земледелия [4].

В современных системах земледелия, построенных на принципах экологизации, и уплотненного использования пашни, определяющий разработку севооборотов с максимальным биоразнообразием, агротехнологии следует ориентировать на решение вопросов накопления и сохранения влаги в почве, воспроизводства плодородия почвы и защиты растений от вредных организмов.

Эти обстоятельства вызывают необходимость рационального размещения озимой пшеницы по благоприятным предшественникам в севооборотах, с увеличением биоразнообразия возделываемых культур для повышения производства продукции растениеводства и сохранения плодородия почвы.

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Ульяновский государственный аграрный университет имени П.А. Столыпина» на кафедре «Земледелие, растениеводство и селекция» и является разделом комплексной государственной межведомственной программы фундаментальных и прикладных исследований по научному обеспечению развития АПК Российской Федерации на 2016-2020 гг., выполняемой коллективом кафедры («Биологизация севооборотов, воспроизводство биогенных ресурсов и регулирование плодородия чернозема выщелоченного лесостепи Поволжья». Регистрационный номер: АААА-А16-116041110185-3).

Степень разработанности темы.

Изучением вопросов совершенствования звеньев севооборотов с озимой пшеницей и технологии ее возделывания, направленных на повышение урожайности и продуктивности севооборотов, занимались многие ученые в разных регионах страны: И.Н. Дорохин (1990); А.А. Асмус (2009); А.М. Шпанев (2009); М.С. Овчаренко (2009); А.В. Кислов (2012); В.Г. Лошаков (2012); Ю.В. Гордеева (2013); О.И. Власова (2014); А.К. Агафонов (2015); А.Г. Кочмин (2015); А.Л. Тойгильдин (2017); и др.

Многие исследователи отмечают, что озимой пшенице принадлежит основной объем посевных площадей и валового сбора зерна в различных регионах нашей страны. В условиях лесостепной зоны Поволжья в основном она размещается по чистому пару, что обуславливает ее высокую продуктивность, однако не всегда это приводит к повышению продуктивности севооборотов. Чистый пар имеет недостатки в виде отсутствия урожая в год парования и экологические последствия в виде проявления эрозии и дефляции, чрезмерной минерализации органического вещества и деградации плодородия почвы. Решение данного вопроса представляется на основе совершенствования структуры посевных площадей — частичной замены чистого пара.

Цель исследований: совершенствование технологии возделывания озимой пшеницы в звеньях севооборотов с чистым паром и непаровыми предшественниками в условиях лесостепной зоны Среднего Поволжья.

Задачи исследований:

- 1. Изучить динамику плотности почвы и продуктивной влаги чернозема выщелоченного в звеньях севооборотов с озимой пшеницей в зависимости от предшественников и обработки почвы;
- 2. Определить влияние предшественников, обработки почвы и уровней защиты растений в севообороте на фитосанитарное состояние озимой пшеницы;
- 3. Оценить вклад предшественников, обработки почвы и средств защиты растений в формирование урожая и качества зерна озимой пшеницы;
- 4. Провести сравнительную оценку продуктивности звеньев севооборотов с озимой пшеницей по чистым парам и непаровыми предшественниками по выходу зерновых единиц;
- 5. Дать экономическую и агроэнергетическую оценку эффективности возделывания культур в звеньях севооборотов с озимой пшеницей.

Объект и предмет исследований.

Объектом наших исследований являются посевы озимой пшеницы в звене севооборотов с масличными культурами – лен масличный, горчица белая, рапс яровой. Предмет исследований – сравнительная продуктивность, агроэкологическая и экономическая оценка звеньев с озимой пшеницей по чистому пару и непаровыми предшественниками в зависимости от основной обработки почвы и уровня защиты растений от вредных организмов в условиях лесостепной зоны Среднего Поволжья.

Научная новизна.

В условиях лесостепной зоны Среднего Поволжья изучены особенности формирования урожая озимой пшеницы по непаровым предшест-

венникам - льна масличного, горчицы белой и рапса ярового. Дана оценка сравнительной продуктивности звеньев севооборотов с чистым паром и непаровыми предшественниками в зависимости от основной обработки почвы и уровня защиты растений в севооборотах. Звенья севооборотов с озимой пшеницей и с непаровыми предшественниками (лен масличный, горчица белая, рапс яровой) повышают продуктивность пашни на 0,25-0,37 тыс. з.е. с 1 га или 9,7-14,3 %, снижают потери органического вещества почвы в сравнении с паровыми звеньями. Доказано, что размещение озимой пшеницы после крестоцветных культур снижает распространение корневых гнилей на 25,6-34,1 % и листовой ржавчины на 20,6-22,6 %. Адаптивно-интегрированная защита растений на озимой пшенице снижает распространение корневых гнилей на 81-82 %, листовой ржавчины на 60-79,5 % и обеспечивает сохранность урожая на уровне 0,37 т/га зерна или 9,2 %.

Теоретическая и практическая значимость.

Результаты проведенных исследований позволяют рекомендовать использовать лен масличный (сорт Северный), горчицу белую (Рапсодия), рапса ярового (Солар) в севооборотах лесостепной зоны Среднего Поволжья в качестве предшественника озимой пшеницы. Это обусловлено решением задачи эффективного использования земель сельскохозяйственного назначения, повышения продуктивности посевов и регулирования режима органического вещества почвы.

Введение полученных решений позволит повысить продуктивность звеньев на 0,25-0,37 тыс. зерновых единиц с 1 га, условного чистого дохода в среднем на 5022 руб. с 1 га, в 2,7-5,2 раза сократит потери органического вещества почвы. Размещение озимой пшеницы после крестоцветных культур снижает распространение корневых гнилей на 25,6-34,1 % и листовой ржавчины на 20,6-22,6 %. Адаптивно-интегрированная защита растений на озимой пшенице снижает распространение корневых гнилей на

81-82 %, листовой ржавчины на 60-79,5 % и обеспечивает сохранность урожая на уровне 0,37 т/га зерна или 9,2 %.

Методология и методы исследований.

Методология исследований основана на изучении научной литературы отечественных и зарубежных авторов. Методы исследований: теоретические — обработка результатов исследований методом статистического анализа; эмпирические — полевые опыты, графическое и табличное отображение полученных результатов.

Основные положения, выносимые на защиту:

- звенья севооборотов с озимой пшеницей и с непаровыми предшественниками (лен масличный, горчица белая, рапс яровой) повышают продуктивность пашни на 0,25-0,37 тыс. з.е. с 1 га или 9,7-14,3 %, снижают потери органического вещества почвы в сравнении с паровыми звеньями;
- размещение озимой пшеницы после крестоцветных культур снижает распространение корневых гнилей на 25,6-34,1 % и листовой ржавчины на 20,6-22,6 %;
- адаптивно-интегрированная защита растений на озимой пшенице снижает распространение корневых гнилей на 81-82 %, листовой ржавчины на 60-79,5 % и обеспечивает сохранность урожая на уровне 0,37 т/га зерна или 9,2 %.

Степень достоверности результатов.

Степень достоверности подтверждается современными методами проведения исследований в полевых опытах, необходимым количеством наблюдений и учетов, результатами статистической обработки экспериментальных данных, показателями дисперсионного и корреляционнорегрессионного анализов.

Апробация работы.

Результаты исследований и положения диссертации докладывались и обсуждались на Всероссийских научно-практических конференциях: «Аг-

рарная наука и образование: опыт, проблемы и пути их решения: IX международная научно-практическая конференция, посвященная 75-летию Ульяновского государственного аграрного университета имени П. А. Столыпина» (Ульяновск, 20-21 июня 2018 г.); «100-летие кафедры растениеводства, кормопроизводства и агротехнологий: итоги и перспективы инновационного развития» (Воронеж 2019 г.); «Фундаментальные основы и прикладные решения актуальных проблем возделывания зерновых бобовых культур» (Ульяновск, 2020 г.); «Биологическая интенсификация систем земледелия: опыт и перспективы освоения в современных условиях развития» (Ульяновск, 2021 г.).

Результаты исследований внедрены в КФХ А.В. Козлова Майнского района Ульяновской области на площади 400 га с экономическим эффектом более 2 млн. руб., что подтверждается актом внедрения.

По теме диссертации опубликовано 8 научных работ, в том числе 3 публикации в реферируемых изданиях, рекомендованных ВАК Министерства образования и науки РФ.

Объем и структура НКР.

Работа изложена на 194 страницах и состоит из введения, пяти глав, заключения и предложений производству, включает 28 таблиц, 5 рисунков. Библиографический список включает 245 наименований, в том числе 18 зарубежных авторов. В работе имеется 38 приложений.

Личный вклад автора.

Автор самостоятельно проводил планирование теоретических и экспериментальных исследований, принимал непосредственное участие в закладке и проведении полевых опытов, выполнял учеты, наблюдения и анализы. Ежегодно представлял научные отчеты, на основании которых обобщил полученные результаты и сформировал заключение и предложение производству. Личный вклад автора оценивается в 80 %.

Глава 1. Основные элементы агротехнологии озимой пшеницы в звене севооборота в условиях лесостепи Среднего Поволжья.

1.1. Предшественники в формировании урожая озимой пшеницы

В практике земледелия необходимость смены культур никогда не вызывала сомнений, даже на заре земледелия, в период господства залежной и переложной систем, перерыв в посеве зерновых культур осуществляли путем оставления полей в залежь и перелог [4, 123, 160].

Повышение урожайности озимой пшеницы достаточно тесно связано с плодородием почвы, возделываемыми сортами, звеньями севооборотов. При этом технология возделывания существенно влияет на плодородие почвы [4, 27, 122].

По данным ряда исследований, предшественники влияют на содержание влаги, питательных веществ в почве, полноту всходов, перезимовку, фитосанитарное состояние посевов, урожайность и качество зерна озимой пшеницы. Оптимальный выбор предшественников и средств защиты растений становится одним из определяющих условий получения стабильных урожаев озимой пшеницы высокого качества зерна [2, 116, 153, 164, 211].

Важным фактором для формирования качественного урожая зерна озимых культур являются своевременные всходы и равномерное, дружное развитие растений перед уходом в зиму [143].

Ограничивающим фактором получения всходов является влажность верхнего слоя почвы, которая во многом зависит от предшественников, особенно в условиях неустойчивого и недостаточного увлажнения [60, 67, 87, 154, 155]. Почва должна быть оптимально увлажнена в посевном слое, так и в зоне распространения корней озимой пшеницы. В ней должны содержаться все элементы питания, необходимые для растений: азот, фосфор, калий, кальций, сера, железо, магний и др. [145].

Все требования озимой пшеницы к предшественнику сводятся к тому, чтобы к ее севу в почве больше накапливалось доступной влаги, пита-

тельных веществ, доступных для растений, а также было чистое в фитосанитарном отношении почвы. Именно такие предшественники озимой пшеницы позволяют достигать высоких урожаев зерна озимой пшеницы. Этим требованиям и отвечает чистый пар [155, 205].

Распределение озимой пшеницы в лучшем севообороте — важное звено в технологии возделывания. Многие авторы считают, что более высокие урожаи озимая пшеница дает по чистому пару, который лучше обеспечивает растения влагой и питательными веществами, улучшает фитосанитарное состояние почвы и посевов [90, 91, 99, 100].

По сообщению Г.Н. Гасанова с соавторами [159], предшественники озимой пшеницы, после которых к началу ее посева остается или накапливается достаточное количество продуктивной влаги в пахотном слое почвы, являются лучшими для своевременного получения дружных всходов.

Среди предшествующих культур приоритетное место занимают чистые и занятые пары. Пар — это поле, свободное от возделываемых сельскохозяйственных культур в течение определенного периода времени. В результате механической обработки почвы и применения гербицидов оно поддерживается в чистом от сорняков виде с хорошим физическим состоянием почвы. Существуют два типа паров: чистые и занятые, в свою очередь, чистые пары представлены двумя видами паров — черные и ранние. Занятые пары делятся на три вида: сплошные занятые, пропашные занятые и сидеральные. Отдельно выделяют кулисный пар, который занимает промежуточное положение между чистыми и занятыми парами [90, 91].

Согласно исследованиям А.Ф. Мельника и Б.С. Кондрашкина, урожайность озимой пшеницы по предшественнику черный пар выше, чем по редьке масличной и однолетним травам [112, 113].

Размещение озимой пшеницы по черному пару обеспечивает увеличение влажности почвы и меньшую засоренность многолетними и малолетними сорняками в сравнении с занятым и сидеральным парами [171].

Чистые пары не везде экономически выгодны. Исследования показывают, что в ряде районов (Полесье, Нечерноземье, Лесостепь) при правильной агротехнике можно получать высокие урожаи озимой пшеницы и по занятым парам. Результаты работ научно-исследовательских учреждений и опыт передовых хозяйств показывают, что общая экономическая эффективность отдельных звеньев и целых ротаций севооборотов с занятыми парами во многих регионах бывает выше, чем в севооборотах с чистыми парами. Отсюда решение вопроса о введении чистых и занятых паров в севооборотах должно решаться в хозяйстве с учетом всех абиотических факторов. Предшественник оказывает влияние как на эффективное плодородие почвы, так и на запасы влаги в корнеобитаемом слое [45, 145].

В условиях лесостепи Поволжья зернопаровые севообороты обеспечивают поддержание фитосанитарной обстановки на полях, сохранение влаги, минерализацию органического вещества почвы, что, как правило, повышает урожайность озимой пшеницы. Однако известны экологические и экономические последствия чистых паров [16, 122, 238].

В среднем за 14 лет исследований Г.Р. Дорожко, в зоне неустойчивого увлажнения урожайность озимой пшеницы по занятому пару всего на 7% ниже, чем по чистому пару, что, в свою очередь, свидетельствует о нецелесообразности использования чистого пара в этой зоне в качестве предшественника озимой пшеницы [37].

Водный баланс в опытах Мамырко Ю.В. свидетельствует о более экономном потреблении влаги горчицей, чем льном масличным. Суммарное водопотребление агроценозом льна было существенно выше, чем горчицы белой на 415 и 532м³ [110].

В Ставропольском крае в засушливые годы продуктивность получаемого урожая озимой пшеницы достигала по чистому пару 2,1 т/га, в более критических районах зоны — 2,3 т/га. Но, несмотря на высокие урожаи озимой пшеницы по чистому пару, он является недоходным предшественником. Помимо этого, чистый пар приводит к потерям гумуса и органического вещества почвы, которые не компенсируются [16, 37, 67, 73, 143].

В Ставропольском НИИСХ выявлено, что в зоне неустойчивого увлажнения чистый пар как предшественник под озимую пшеницу не накапливает летние осадки, его существенная роль заключается в сбережении поглощенной почвой влаги за осенне – зимний период. В связи с этим в этой зоне озимую пшеницу институт рекомендует возделывать по занятым, сидеральным парам и непаровым предшественникам [57]. Возделывание чистых паров в этой зоне признано не рентабельным, их следует заменять занятыми парами [162, 186].

В исследованиях Мамырко Ю.В. [110], использование льна масличного, горчицы белой в качестве предшественников озимой пшеницы показало, что урожайность озимой пшеницы была выше по предшественнику горчица белая, сарептская 5,10-5,12 т/га, в то время, как по льну масличному данный показатель был меньше на 0,94-0,98 т/га. Обосновано, что лучшим предшественником озимой пшеницы является горчица сарептская, обеспечившая получение высоких и стабильных урожаев озимой пшеницы

В опытах Ульяновской ГСХА зернобобовые агрофитоценозы в севооборотах повышают зерновую продуктивность звеньев с озимой пшеницей на 34,8% по сравнению со звеном «чистый пар — озимая пшеница» [16, 118]

Исследования Тойгильдина А.Л. показали, что наибольшая урожайность озимой пшеницы формируется после чистого пара, однако по

продуктивности преимущество имеют звенья севооборотов с бобовыми культурами, где выход зерна возрастал с 2,20 до 2,83-2,91 т/га, а зерновых единиц с 2,20 до 3,25-3,34 тыс./га. Оптимальное соотношение предшественников для озимой пшеницы в условиях лесостепи Поволжья следующее: чистый пар 40 % и занятый пар 60 %, что позволит повысить продуктивность звеньев и экономическую эффективность использования пашни[185, 186].

В условиях лесостепной зоны Поволжья чистый пар оказывает положительное влияние на урожайность последующей — второй культуры (яровой пшеницы) только в засушливые годы, тогда как в годы с достаточной увлажненностью преимущество имеют бобовые предшественники и сидеральный пар. Качество зерна яровой пшеницы повышалось в зерновых звеньях с бобовыми культурами и сидератом независимо от влагообеспеченности года. По сравнению с первой ротацией во второй ротации севооборотов повышались урожайность и качество зерна озимой и яровой пшеницы, что указывает на эффективность приёмов биологизации технологии возделывания зерновых культур [186].

Важное место в агротехнике озимой пшеницы занимают бобовые культуры в качестве предшественников. При их использовании есть потенциал увеличить урожайность на 0,7-0,8 т/га. Следовательно, благодаря возделыванию бобовых культур существует вероятность без уменьшения производительности севооборота существенно увеличить валовой сбор зерна и оптимально насытить севооборот зерновыми культурами, что является очень важным фактором для специализированных хозяйств [186].

В опытах М.Н. Парыгиной [145], показано, что после многолетних и однолетних трав при высокоинтенсивной технологии возделывания можно получать урожайность озимой пшеницы на уровне 7-8 т/га.

В исследованиях Н.В. Парахина и А.Ф. Мельника (2015) доказано, что севооборот уменьшает видовой состав сорных растений. Вид севообо-

рота значительно влияет на засоренность посевов. Наибольшая численность сорняков за годы исследований авторами была отмечена в зернопропашном севообороте, наименьшая — в зернотравяном. Промежуточное значение занимал зернопаропропашной севооборот [143, 144].

В сравнении с льном масличным горчица белая, сарептская оказывает ингибитирующее действие на прорастание сорняков, ввиду этого сорной растительности в 1,6 раз было меньше, чем на посевах льна масличного. Положительное последствие этого свойства отмечалось и на посевах озимой пшеницы, по которой количество всходов двудольных сорняков было на 41% меньше, чем после льна масличного [110].

С внедрением в севообороты фитосанитарных предшественников достигается значительное оздоровление почв от почвенных вредных организмов, особенно возбудителей корневых гнилей. Соя и рапс очищают почву от возбудителя гельминтоспориозной корневой гнили, а многолетние бобовые травы очищают от овсяной цистообразующей нематоды. Паровые предшественники улучшают фитосанитарное состояние почв в результате минерализации зараженных растительных остатков и прямой гибели возбудителей в почве [60, 116].

В работах Шпанева А.М. были получены следующие данные: наименьшее количество сорняков было в севообороте с занятым сидеральным паром и однолетними травами. Севооборот с чистым паром был значительно засорен малолетними растениями, но лучше справлялся с корнеотпрысковыми сорняками. В севообороте с горохом на зерно было выявлено самое высокое засорение многолетними растениями и незначительным количеством однолетних злаковых сорняков. В посевах зерновых культур по кукурузе и многолетним травам посевы первой и второй зерновых культур после пропашных и многолетних трав отличались большим количеством многолетних сорных растений, превысивших засоренность даже бессменной пшеницы [39, 177, 216].

В зернопропашном севообороте был определен обедненный видовой состав и незначительное количество сорных растений [39].

По мнению ученых Ульяновской ГСХА, нарастание патогенной микробиоты неизбежно при зерновой монокультуре: обнаружен возбудитель корневой гнили пшеницы, ячменя и ржи — Helminthosporium sativum. При включении в севооборот зернобобовых культур, овса и чистого пара распространенность и развитие болезни зерновых смягчается и замедляется [70].

Занятые пары экономически выгодны в хозяйствах, которые достигли высокого уровня земледелия. Рациональность использования занятых паров оправдывается агроэкономическими расчетами урожая. Значительно больше выхода сельскохозяйственной продукции получается при соблюдении агротехнических мероприятий в звене с занятыми парами и непаровыми предшественниками [122, 162].

Занятые пары способны дать экономический эффект в тех хозяйствах, которые достигли сравнительно высокой культуры земледелия. Целесообразность применения занятых паров подтверждается экономическими расчетами. При равных урожаях и последующих культур в севообороте с занятыми парами получают больше продукции на каждый гектар пашни, так как в этом случае площадь используется под посев. Понижение урожайности озимых, которое обычно бывает при посеве их по занятым парам, с излишком покрывается продукцией, получаемой с парового поля. Общий выход продукции в севооборотах с занятыми парами и непаровыми предшественниками обычно выше, если соблюдается агротехника [119, 127, 146, 176, 208].

По мнению А.И. Хрипунова и Н.А. Галушко (2015) занятые пары, как предшественники озимой пшеницы, экономически более выгодны, чем чистые, и с повышением культуры земледелия и уровня интенсификации занятыми парами будут заменять чистые, что и происходит в настоящее

время. По мнению ученых, майские и июльские осадки в занятых парах используются эффективнее, чем в чистых. Травостой вегетирующих растений сохраняет влагу лучше, уменьшая её потери из поверхностных слоев почвы через физическое испарение [46, 204].

Обзор источников литературы свидетельствует о всесторонней изученности предшественников озимой пшеницы. Однако следует отметить, что в сельскохозяйственном производстве такие перспективные культуры, как лен масличный, горчица белая и рапс яровой являются сравнительно новыми для возделывании их в условиях лесостепной зоны Среднего Поволжья. Литературных источников и исследований по использованию данных культур в качестве предшественников озимой пшеницы в условиях региона недостаточно, поэтому требуется всестороннее изучение масличных культур по влиянию на физические свойства почвы, водный режим почвы, фитосанитарное состояние посевов, продуктивность звеньев, что придает актуальность данному направлению. В условиях изменяющегося климата открываются перспективы использования непаровых предшественников (занятых паров) со льном, горчицей и рапсом для озимой пшеницы.

1.2. Влияние обработки почвы на плодородие почвы и урожайность озимой пшеницы

Биологическое земледелие — основа улучшения экологического состояния окружающей среды. Успешное решение этого вопроса возможно при совершенствовании всех составных частей системы земледелия. Важнейшей из них является обработка почвы, так как она определяет процессы воспроизводства плодородия почвы, регулирование почвенных режимов, процессы деградации и охраны почв [2, 23, 25, 26].

Основные задачи обработки почвы: создание оптимального строения пахотного слоя, оптимизация факторов жизни растений, борьба с сорняками являлась самым энергоемким и дорогостоящим приемом [86].

Под обработкой почвы понимают механическое воздействие на неё рабочих органов машин и орудий с целью создания наилучших условий для возделывания растений. Это важнейшее средство регулирования агрофизических условий, почвенных режимов, интенсивности биологических процессов, а также фитосанитарного состояния почвы [39].

Обработка почвы — важное звено в системе агротехнических мероприятий. В результате обработки почвы происходит мобилизация ее плодородия, усиливается минерализация органического вещества, улучшаются физические свойства почвы. Только путем механического воздействия на почву рабочими органами машин и орудий можно создать оптимальные почвенные условия для развития корней культурных растений, проявления высокой эффективности различного рода мелиорантов, удобрений и др.

Вследствие механической обработки почвы, изменения строения пахотного слоя обеспечиваются наиболее благоприятные условия для протекания биологических, физико-химических, физических процессов в ней. Наличие кислорода, влажность почвы, реакция почвенного раствора в обработанной почве изменяются в положительную сторону, что усиливает активность почвенной микрофлоры, которая, участвуя в синтезе и разложении органического вещества, обогащает почву перегноем и увеличивает содержание в ней доступных для растений форм азота, фосфора, калия, магния, серы, железа и других жизненно важных элементов питания растений [34, 36, 134].

Большую роль играет обработка почвы в сохранении пахотного слоя от разрушения. Правильной обработкой можно коренным образом изменить профиль почвы и тем самым повысить ее эффективное плодородие. Например, за счет увеличения мощности пахотного слоя устраняют подзолистый горизонт, повышают влагоемкость, водопроницаемость почвы и т. д. Обрабатывая склоны по горизонталям (по контуру) на различную глубину в сочетании с применением других противоэрозионных приемов,

можно резко усилить поглощение почвой влаги, снизить сток воды и смыв почвы и тем самым ликвидировать процессы водной эрозии [56, 134, 195].

Незаменима роль механической обработки почвы в уничтожении вредных организмов, особенно сорных растений. Известно, что в пахотном слое сосредоточено огромное количество семян и органов вегетативного размножения сорняков, а также всевозможных вредителей и возбудителей болезней. Одна из целей обработки почвы — их своевременное уничтожение. Наилучший эффект при этом обеспечивает сочетание приемов механической обработки почвы в определенной последовательности [54].

Приемы обработки почвы изменяются в зависимости от типа почв, рельефа местности, климата, особенностей выращиваемых культур, системы удобрений, характера засоренности полей, наличия вредителей и болезней и многих других условий конкретного хозяйства, поэтому рациональную систему обработки почвы строят на основе многолетних полевых опытов, проведенных в определенных почвенно-климатических условиях. Она предполагает сочетание различных способов (отвальной и безотвальной, глубокой и мелкой и т. д.) обработки с учетом особенностей отдельных растений, это так называемая комбинированная обработка почвы [54, 153, 190].

Вследствие неодинаковой требовательности сельскохозяйственных культур к строению почвы, обработку ее дифференцируют в зависимости от вида возделываемых растений. Так, для пропашных культур необходим более рыхлый пахотный слой, и потому обработка почвы под эти культуры должна быть глубже на 25-27-30 см, в то время, как для зерновых колосовых в большинстве случаев требуется более уплотненный пахотный слой. Кроме того, независимо от вида растений глубокая вспашка необходима на почвах, имеющих плужную подошву [73, 86, 99].

Правильная система обработки почвы – один из действенных приемов получения высоких урожаев. При сочетании с системой удобрений в сево-

оборотах она обеспечивает высокую эффективность и наиболее рациональное использование плодородия почв [73].

Улучшая агрофизические свойства почвы обработкой, создают возможность управлять биологическими процессами в ней, показателем которых может служить биологическая активность почвы — выделение из нее углекислого газа. Однако прямой связи между агрофизическими свойствами почвы и величиной урожая может и не быть, ибо последний тесно связан с воздействием на растение как почвенно-климатических условий, так и технологии производства [6, 23, 193].

Качественная обработка почвы позволяет повысить ее эффективное плодородие и урожайность сельскохозяйственных культур. В то же время неоправданная интенсивная обработка ведет к распылению структуры, ухудшению агрофизических и агрохимических свойств, к перерасходу затрат энергии, падению плодородия, уменьшению урожайности сельскохозяйственных культур и ухудшению качества продукции [93, 102].

Важное значение в системе технологических приемов возделывания озимой пшеницы имеет правильная обработка почвы. В результате обработки почвы, ее крошения, рыхления или уплотнения создается необходимое соотношение между объемами твердой фазы и порами пахотного слоя (Дудинцев и др. 2008). По мнению Т.С. Рыбалко (2007), механическая обработка почвы является самым эффективным средством уничтожения сорняков, предупреждения появления вредителей и болезней сельскохозяйственных культур [40, 60, 168].

Возделывание озимой пшеницы без обработки почвы приводит к чрезмерному уплотнению чернозема выщелоченного Центрального Пред-кавказья во время вегетации до 1,38-1,40 г/см³, к полной спелости – до 1,42 г/см³, что отрицательно сказывается на росте, развитии и урожайности озимой пшеницы при её возделывании по технологии прямого посева [3].

Основная обработка почвы, пройдя длительный эволюционный путь, остается в настоящее время одним из самых важных, энергоемких и энергозатратных элементов технологии возделывания сельскохозяйственных культур [50].

Вспашка почвы в современном земледелии не отвечает условиям энергосбережения, в связи с чем ее заменяют другими видами обработки почвы: дискованием, культивацией, чизелеванием и др. В результате не происходит рыхления почвы на всю глубину пахотного горизонта и наблюдается переуплотнение нижележащих слоев почвы, что нарушает воздушно—водный режим корнеобитаемого слоя культурных растений. Также ухудшаются условия жизнедеятельности почвообразующих микроорганизмов, происходит снижение плодородия почвы, возрастает засоренность и, как следствие, уменьшается урожайность сельскохозяйственных культур [198].

Теоретической основой вспашки послужило положение В. Р. Вильямса, согласно которому обработка почвы должна быть ежегодная отвальная на глубину не менее 20-22 см. [35].

Накопленный в нашей области и в других регионах России, особенно в зонах недостаточного увлажнения, научно-практический опыт свидетельствует о том, что наиболее доступным выходом на современном этапе из этой ситуации является освоение новых технологий возделывания сельскохозяйственных культур с минимальными обработками почвы и прямым посевом, обеспечивающих ресурсо-энергосбережение, экологическую безопасность, максимальную доходность при выращивании товарной продукции [49, 51].

Сохранение и повышение плодородия почв – одна из главных задач сельскохозяйственного производства [9, 11].

На увеличение потерь гумуса оказывает влияние основная обработка почвы. По данным А.В. Кислова, М.В. Черных, отвальная вспашка в течение 12 лет под культуры севооборота снижала содержание гумуса в слое 0-30 см на 0,19 %, а применение мелких обработок почвы способствовало его повышению на 0,25 % [92].

По результатам исследования Самарского научноисследовательского института сельского хозяйства имени Н.М. Тулайкова по способам и системам обработки почвы не подтверждает широкого распространенного мнения о том, что отказ от плужной обработки приведет к резкому падению плодородия почв. Установлено, что потенциальное и эффективное плодородие черноземов региона сохраняется на высоком уровне и при длительных минимальных обработках почвы в севообороте. Длительное применение таких обработок почвы не приводит к улучшению структуры и плотности почвы [49].

В современных условиях земледелия основной проблемой являются повсеместное снижение плодородия почвы как основная причина использование непроверенных агротехнологий, отказ от севооборотов и безобразное внесение удобрений [58, 238].

В многолетних опытах по изучению различных способов обработки почвы в сочетании с удобрениями резкое нарушение биогенности почвы по слоям пахотного горизонта путем применения глубокой обработки приводит к снижению гумуса. Увеличение глубины обработки почвы при недостатке удобрений приводит к значительному расходу энергии, затягиванию сроков полевых работ, деформации почвы — главных причин недобора урожая [43, 88, 140]. Минимализация обработки почвы (основной, предпосевной и в период ухода за растениями) позволяет избежать многих отрицательных явлений, в том числе и предотвратить снижение органического вещества.

Увеличение глубины вспашки так же, как и безотвальные приемы рыхления, снижая общую биологическую активность в почве и продуктивность гектара пашни, снижают и количество гумуса.

Увеличение глубины культивации, особенно в предпосевной период, приводит к иссушению посевного слоя почвы, ухудшению равномерности заделки и набуханию высеянных семян озимых и снижению их всхожести.

Накопление гумуса при минимальной обработке почвы отмечали в своих исследованиях Н.С. Матюк с соавт. [111], считая, что это связано со снижением темпов разложения растительных остатков, соломы и навоза по сравнению со вспашкой. Проведение отвальной вспашки позволяет улучшать ее плодородие, способствует накоплению и сохранению запасов влаги, снижает засоренность полей. Главным недостатком отвальной технологии обработки почвы является нарушение структуры почвы, которое происходит в результате оборота и крошения пахотного слоя [140, 194].

При поверхностной обработке и при безотвальном рыхлении пожнивно-корневые остатки остаются в верхнем слое, подвергаясь быстрому разложению, повышая микробиологическую деятельность. Но в условиях биологизированного земледелия ввиду увеличения площадей под многолетними травами исключаются поверхностные обработки.

По данным Горянина О.И. (2014), во многих районах Самарской области перспективна дифференцированная система обработки, но с использованием различной техники, в результате чего повышается экономическая эффективность возделываемых культур [51].

При безотвальной технологии структура почвы сохраняется, происходит накопление гумуса, предотвращаются эрозионные процессы. Однако в этом случае сложно вносить органические удобрения, а также высока вероятность засорения полей [198].

Снижения энергоемкости технологического процесса основной обработки почвы при условии соблюдения агротехнических требований (при одинаковой глубине обработки почвы) за счет сохранения структуры почвы, заделки растительных и пожнивных остатков в пахотный слой, воз-

можно достичь за счет комбинации отвальной и безотвальной обработок почвы [77].

Исследования Дедова А.А., проведенные на опытном участке Воронежской области, показали, что отвальный способ обработки по сравнению с безотвальным рыхлением обеспечивал увеличение новообразования легкогидролизуемого азота и подвижных фосфатов [57].

В последние годы весьма актуальными оказались вопросы минимализации обработки почвы в севооборотах, а также применения новых приемов почвозащитной обработки. Под минимализацией обработки почвы понимается уменьшение количества и глубины обработок с заменой их поверхностными и плоскорезными, совмещение нескольких технологических операций за счет применения орудий с активными рабочими органами и комбинированных агрегатов, широкое проведение полосной (Striptill) или колейной обработки, полное исключение механических обработок (no-till) в результате использования специальных сеялок. При этом эффективность минимальной обработки почвы во многом зависит от культуры земледелия, метеорологических условий, правильно организованной системы мер по защите растений от сорняков, вредителей и болезней. При минимализации обработки в производственных условиях, где поля нередко засорены различными по биологическим свойствам сорняками, необходимо применение эффективных гербицидов, а также использование комбинированных агрегатов [58, 98].

Как отмечают А.Я. Айдиев, В.И. Лазарев, М.Н. Котельникова (2017), разработка технологий возделывания озимой пшеницы, обеспечивающих получение высоких и устойчивых урожаев с высоким качеством зерна, максимально адаптированных к местным почвенно-климатическим условиям, имеет важное теоретическое и практическое значение. Сравнительно высокие запасы нитратного азота (106,3 кг/га) в слое почвы 0-40 см перед посевом озимой пшеницы отмечено в вариантах отвальной системы обра-

ботки почвы и применении органо-минеральной системы удобрения (навоз $30\,$ т/га, $N_{60}P_{60}K_{60}$, зеленое удобрение). В вариантах плоскорезной и поверхностной систем обработки почвы эти показатели были ниже на $1,1\,$ и $3,7\,$ кг/га соответственно. В качестве пожнивной и сидеральной культуры в севооборотах часто используют горчицу белую. Это оказывает положительное влияние как на баланс органического вещества, так и на фитосанитарное состояние посевов. Соотношение C:N в горчице обеспечивает повышение биологической активности почв и усиливает процессы минерализации, а также приводит к накоплению питательных веществ в почве [6].

В условиях современного земледелия около 70-80 % площади посевов в России имеют среднюю, сильную и очень сильную степень засоренности. Площадь посевов с высокой и очень высокой степенью засоренности постоянно возрастает из-за низкой культуры земледелия, неодоценки мер борьбы с сорняками, несоблюдения севооборотов, нарушения агротехники возделывания культур.

Ежегодные потенциальные потери урожая зерна от сорных растений в России составляют около 10-15 млн. т. В зависимости от видового состава, плотности заселения, продолжительности конкурентных взаимоотношений культуры с сорняками урожайность зерна снижается до 70 %. Низкая конкурентная способность культурных растений к сорнякам и высокая потенциальная засоренность почвы являются наиболее актуальной причиной недобора урожайности зерновых колосовых культур [177].

Наблюдения Н.А. Морозова также свидетельствуют, что различные способы обработки почвы по-разному влияют на засоренность почвы. Было отмечено возрастание засоренности посевов ячменя при поверхностной обработке почвы. При разноглубинной плоскорезной обработке, а также на фоне комбинированной (отвально-плоскорезной) обработки засоренность оставалась на уровне контроля (разноглубинной отвальной обработки).

При комбинированной отвально-чизельной обработке было отмечено снижение сорняков по сравнению с контролем [162].

В свою очередь Н. И. Картамышев высказывается, что вспашка не способствует заметному снижению засоренности, так как обрабатываемый слой почвы давно уже равномерно насыщен семенами и вегетативными органами размножения сорняков, находящимися в состоянии глубокого покоя, а извлекаются способные к прорастанию [25].

Обобщая раздел изучаемой темы, стоит отметить, что накоплен значительный экспериментальный материал воздействия отдельных агротехнических приемов на урожайность озимой пшеницы, качество зерна и плодородие почвы. Однако в региональных условиях лесостепи Среднего Поволжья отсутствуют исследования в звеньях севооборотов с такими предшественниками, как лен масличный, горчица белая, рапс яровой. Имеются данные, полученные в основном в однофакторных полевых опытах. Существует необходимость в изучении действия, взаимодействия и последействия ключевых элементов систем земледелия на режим органического вещества почвы, формирование урожайности и качества зерна озимой пшеницы.

1.3. Защита растений от вредных организмов в агротехнологиях озимой пшеницы

В повышении урожайности зерновых культур важное место принадлежит их защите от вредителей и болезней, которые нередко наносят большой вред, приводя к значительному снижению сбора зерна и ухудшению его качества, а иногда и к гибели посевов. Степень вредоносности болезней и вредителей зависит от экологических условий возделывания и особенностей культуры [160].

Болезни озимой пшеницы существенно снижают урожайность и качество зерна. В связи с этим потери валового сбора зерна от болезней ежегодно составляют 20-30 %, а в отдельные (эпифитотийные – когда степень

поражения культур болезнями значительно превосходит среднестатистические показатели) годы могут достигать и 50 % [177].

В среднем ежегодно от вредителей озимой пшеницы гибнет около 15 % урожая. В отдельные годы эта цифра может быть значительно выше. Наиболее опасные вредители озимой пшеницы — это клоп вредная черепашка, пшеничный трипс, полосатая хлебная блошка, шведская муха. Наиболее вредоносные болезни озимой пшеницы: ржавчина, корневые гнили, пыльная головня, мучнистая роса [42, 101, 160, 176].

Большую роль в снижении потерь урожая играют пестициды. Практика мирового земледелия убедительно доказывает, что защита растений является важным фактором повышения урожайности. Так, в ряде стран Западной Европы в течение последних лет получают стабильные урожаи зерновых в пределах 60-80 ц/га, причем треть этого урожая обеспечивается за счет защиты растений. Однако известно, что использование отдельных, даже исключительно эффективных мероприятий по защите с/х культур, не может дать долговременного подавления вредных организмов. Этого можно достичь лишь при применении всех доступных профилактических и истребительных мероприятий [123].

Между тем, многие сельскохозяйственные производители сегодня не располагают всем необходимым для ликвидации угрозы серьезных недоборов урожаев. Снизилась культура земледелия, появилось много брошенных земель, уменьшились объемы применения химических и биологических средств. А причиной всему этому прежде всего является нехватка средств. Защитные мероприятия очень дороги. Еще дороже современные машины для применения пестицидов. Но есть путь, который позволяет достигать нужных целей, не прибегая к наращиванию затрат. Его реальность давно доказана учеными, подтверждена опытом. Это интегрированные системы защиты растений. Они предусматривают отказ от тотального истребления вредных организмов и поэтапный переход к созданию ста-

бильных фитосанитарных отношений агро-экосистем, в которых будет действовать механизм саморегуляции и управления численностью вредных организмов. Вместо массовых химических обработок — выборочные, на основе предварительных обследований и установления явной необходимости применения спецсредств. Рациональное использование химических, биологических и других методов защиты растений при этом позволят не только отвести прямую угрозу, но и создать условия для деятельности полезных природных организмов [123, 125, 158].

В настоящее время для производственного применения широко используют интегрированную защиту посевов от сорных растений. Таким образом, уничтожение сорной растительности является одним из важнейших резервов рационального использования земли в земледелии, повышения потенциальной урожайности и качества озимой пшеницы [123, 158, 171, 187].

Разработанная учеными интегрированная защита практически всех важнейших культур базируется на следующих основных элементах: высокая агротехника, обеспечивающая получение хорошо развитых растений; выращивание сортов, устойчивых к вредителям и болезням; сохранение и активизация деятельности природных энтомофагов. Проведение истребительных мероприятий (биологических и химических) предполагается только с учетом оценки фитосанитарного состояния посевов, прогноза развития вредных организмов и экономических порогов вредоносности.

К сожалению, внимание к интегрированным системам со стороны как науки, так и государственной службы защиты растений, проявлявшееся в конце прошлого века, сейчас ослабло. И это серьезная ошибка, исправлять которую необходимо в первую очередь. Сегодня проблемы защиты растений должны рассматриваться в общем контексте с теми процессами и тенденциями, которые наблюдаются в сельском хозяйстве. При всех многочисленных трудностях наметились перемены в лучшую сторону. Это

связано, в частности, с государственной политикой поддержки сельхозтоваропроизводителей в виде выделения субсидий и дотаций на пестициды, удобрения и семена, поставок машин по лизингу, компенсаций затрат на борьбу с наиболее опасными вредителями и болезнями.

Использование гербицидов и пестицидов эффективно лишь в то время, когда вредные организмы по численности и развитию превышают экономический порог вредоносности. Комплекс средств химизации в оптимальных дозах не влияет негативно на химический состав зерна, не вызывает накопления нитратов, нитритов, нитрозааминов, тяжелых металлов и др. Решающее значение для безопасности использования имеет совершенствование препаративных форм пестицидов. До недавнего времени пестициды выпускались в основном в виде смачивающихся порошков, концентратов, эмульсий и гранул. В последнее время разработаны новые препаративные формы: текучая суспензия, сухая текучая суспензия или вододиспергируемые гранулы, микрокапсулы, микрогранулы и многие другие, более безопасные для окружающей среды и обслуживающего персонала, обладающие более улучшенными физико-химическими и товарными качествами [3, 13, 42, 116, 198].

Применение специальных соединений является одним из новых направлений нейтрализации токсичного действия пестицидов и, в особенности, гербицидов.

Интегрированная защита включает в себя комплекс мероприятий, состоящих из агротехнических, биологических, карантинных, селекционно—семеноводческих, механических, физических и химических способов борьбы с вредными объектами.

Обязательным элементом технологии возделывания озимых является интегрированная защита посевов от сорняков, болезней и вредителей. Сорняки снижают урожайность и качество зерна озимых, усложняют уход за посевами и уборку урожая.

По исследованиям Фетюхина И.В. Баранова А.А. (2019), было установлено, что для эффективной защиты посевов озимой пшеницы против малолетних и многолетних видов сорных растений, в том числе специализированных для культуры, рекомендуется внедрение интегрированной защиты растений, предусматривающей сочетание предупредительных, фитоценотических, механических и химических мер [198].

Применение интегрированных мер борьбы с сорняками обеспечит повышение уровня рентабельности возделывания озимой пшеницы на 15-20 % [39].

Существенную роль в формировании урожая сельскохозяйственной культуры играют сорные растения. Вредоносность сорных растений содержится в их значительной семенной продуктивности, лучшей приспособленности к неблагоприятным условиям окружающей среды, что определяет высокую конкурентоспособность сорных растений в борьбе за факторы роста и развития. Вред, наносимый сорными растениями, не сводится только к конкуренции за воду и питательные вещества, сорняки влияют на распространение болезней и вредителей на культурных растениях, что в свою очередь отрицательно сказывается на качестве урожая культуры, приводит к увеличению себестоимости выращиваемой культуры [43, 76, 78, 177, 136]

Основным резервом увеличения урожайности озимой пшеницы является борьба с сорной растительностью. Известно, что при интенсивной засоренности посевов урожайность возделываемой культуры уменьшается на 25-30%. Вследствие конкуренции культурных растений с сорняками за воду, свет и питательные вещества происходит снижение количества и качества зерна [20, 78].

При правильном расположении культур в севообороте эффективно используются морфологические и биологические особенности растений,

почвенное плодородие, а также трудовые и энергетические ресурсы регионов.

Одним из наиболее важных факторов, способных дестабилизировать валовой сбор зерна, снизить урожайность культуры, является фитосанитарная обстановка на полях. В годы, благоприятные для развития вредных организмов, может быть полностью уничтожен урожай зерна.

Под сорной растительностью понимают растения, не возделываемые человеком, но засоряющие сельскохозяйственные угодья, питомники и лесные культуры. Согласно ГОСТ 16265 – 89, сорные растения – это дикорастущие растения, обитающие на сельскохозяйственных угодьях и снижающие величину и качество продукции возделываемых культур [20, 177].

Сорные растения наносят сельскому хозяйству значительный материальный ущерб. Потери урожая сельскохозяйственных культур в мире при средней засорённости посевов сорняками составляют для зерновых колосовых, зернобобовых, подсолнечника — 15-20 %, сахарной свеклы — 22,4 %, кукурузы, сорго, сои — 25-30 %, овощных культур и многолетних трав — 35-40 % и более.

Доказано, что наиболее эффективно сдерживает массовое размножение отдельных видов вредных организмов разнообразие агробиофитоценоза т.е. соблюдение севооборотов и нужный выбор агротехнических приемов. Логичнее и целесообразнее создавать предупредительные условия, ограничивающие развитие вредных видов и естественно регулирующие их численность или распространение. Это позволит существовать открытой системе, рассчитанной на экологичную технологию.

Г.Н. Черкасовым с соавт. установлено, что севооборот сужает видовой состав сорняков. Значительное влияние на засоренность посевов оказывает вид севооборота. В среднем за годы исследований наибольшая численность сорняков была отмечена авторами в зернопропашном севообороте, наименьшая — в зернотравяном [208, 209].

Таким образом, ежегодное чередование культур в севообороте является одним из способов профилактики полей от засоренности. Вид культуры является незначительным показателем при переходе от бессменного возделывания для снижения засоренности и увеличения урожайности. Значительное совпадение экологических требований сорных растений с требованиями культурных растений в факторах жизни способствует их благоприятному развитию в агроценозах.

В опытах ВНИИЗиЗПЭ Черкасова Г.Н., Дудкина И.В. (2010) введение в трех полях пятипольного зернопропашного севооборота пожнивных культур (горохоовсяная смесь) снижало как количество, так в большинстве случаев и массу сорняков. Такой эффект промежуточных культур сильнее проявлялся в отношении многолетних сорных растений, чем в отношении малолетних [207].

Возделываемые культуры имеют разную биологическую способность противостоять сорным растениям. Сильнее засоряются и подавляются сорняками культуры с медленным ростом в первый период после посева, а также с менее развитой надземной частью и слабыми корнями.

Обработка почвы — важнейшее средство регулирования агрофизических условий, почвенных режимов, интенсивности биологических процессов, а также фитосанитарного состояния почвы [49, 117, 119]. Способы обработки почвы в системах земледелия существенно влияют на вид и численность сорных растений, а также на их вредоносность [76]. Обработке почвы принадлежит ведущая роль в регулировании численности сорных растений и предупреждении их распространения в агроценозах.

Ряд авторов установили зависимость эффективности различных приёмов основной обработки почвы в борьбе с сорными растениями от погодных условий. В сухие и умеренно засушливые годы менее засорены были посевы культур в севообороте на беспахотных обработках, а во влажные, наоборот — на вспашке. Это явление многие авторы объясняют

разным распределением семян сорняков в пахотном слое и способностью их прорастать в основном близко от поверхности почвы. При беспахотных обработках семян сорняков больше в поверхностном слое, они интенсивно прорастают при выпадении даже небольших дождей и, таким образом, в большей степени засоряют посевы, чем при вспашке. В сухие годы без дождей поверхностный слой почвы быстро высыхает, семена, расположенные в нём, не прорастают. А на вспашке они прорастают с более глубоких слоёв, так как там есть доступная влага, тем самым увеличивая засорённость посевов.

Выбирая гербициды, необходимо учитывать токсичность и период их активности в почве. Например, атразин среднетоксичен, период его активности около года и более. Раундап среднетоксичен, неактивен в почве или на её поверхности, период его распада составляет всего 2-3 недели. Применение экологически приемлемых гербицидов на сегодня является необходимостью, так как механические обработки в ряде случаев могут наносить почве гораздо больший экологический ущерб в результате усиления эрозионных процессов [21, 74].

Спиридонов Ю.Я. с соавторами рассчитал, что долевой вклад каждого из защитных приемов в общую суммарную хозяйственную эффективность составляет для протравителя 17 %, для гербицида — 38 %, для инсектицидов — 20 % и для фунгицидов — 25 % сохраненного урожая. Максимальный хозяйственный эффект от использования средств защиты пропорционален уровню урожайности озимой пшеницы — чем она выше, тем больше защищенная урожайность от применения пестицидов. При этом сохранённый урожай формируется благодаря большей продуктивной кустистости, увеличению длины колоса, числа колосков и зерен в колосе и, особенно, повышению массы 1000 зерен, которая на 15-17 % больше, чем в контроле [3].

При использовании гербицидов и фунгицидов, а также инсектицидов и регуляторов роста количество продуктивных стеблей возрастало до 440-488 шт./м². Применяемые средства защиты растений способствовали повышению величины этого показателя в среднем на 9 %. Рост урожайности озимой пшеницы обеспечивало комплексное применение удобрений и средств защиты растений.

Применение гербицидов и фунгицидов обеспечивало увеличение урожайности зерна озимой пшеницы в среднем по фонам обработки почвы и удобрениям на 0,55 т/га, а добавление к ним инсектицидов и регуляторов роста — на 0,76 т/га, или соответственно на 13,0 и 18,0 % по отношению к первому уровню защиты растений, в котором использовали только протравливание семян [3, 66, 74].

В исследованиях Ефимова А.А. использование фунгицидов на фоне гербицидных обработок способствовало некоторому увеличению высоты растений, массы зерен в колосе и урожайности культуры, но число зерен в колосе не увеличивалось. Прибавка урожайности за счет фунгицидов составляла 9,5 ц/га, а за счет гербицидов, примененных на фоне фунгицидов, — 3,9 ц/га. Содержание клейковины на вариантах с использованием фунгицидов с гербицидами не отличалось, где использовались только гербициды, и составляло 28-29 % [66].

Сочетание инсектицида с фунгицидами увеличивало их биологическую эффективность через 20 дней на 7,7-9,5 %. При этом использование инсектицида увеличивало урожайность культуры и несколько улучшало некоторые показатели качества зерна. Комплексное использование средств защиты озимой пшеницы способствовало увеличению количества продуктивных стеблей, увеличилась высота растений, число и масса зерен в колосе, а также масса 1000 зерен и биологическая урожайность культуры, которая составила 54,9 ц/га.

Применение пестицидов является наиболее эффективным средством борьбы с болезнями, вредителями и сорняками при выращивании сельско-хозяйственных культур. Однако обработка посевов пестицидами не только подавляет сорную растительность, болезни и вредителей, но может приводить к угнетению культурных растений и негативно влиять на экологическую ситуацию [66].

Для этого в большом объеме используются химические средства, хотя известны отрицательные последствия их применения (загрязнение пестицидами почв, воды, сельскохозяйственной продукции, снижение численности естественных врагов вредителей и т д) Ученые ведут интенсивный поиск путей уменьшения отрицательного воздействия химических препаратов на сельскохозяйственные культуры, в частности разрабатывают интегрированные системы защиты растений, которые представляют собой рациональное сочетание всех методов борьбы с вредителями, болезнями и сорняками [74, 160, 171].

Таким образом, интегрированная система защиты растений, которая опирается на организационно-хозяйственные и агротехнические меры с применением по необходимости химических средств защиты растений является более эффективной. Исследователи указывают на различную биологическую и экономическую эффективность применяемых фунгицидов и их влияние на качество зерна. Однако обзор литературы показывает, что рациональное использование фунгицидов при правильно использовании может не только обеспечить реализацию потенциальной продуктивности высокоурожайных сортов озимой пшеницы, но и обеспечить стабильность получения высококачественного зерна, что требует изучения в конкретных почвенно-климатических условиях.

Глава 2. Почвенно-климатические условия и методика проведения исследований

2.1. Почвенный покров опытного участка и его агрохимические характеристики

Для успешного осуществления системы агротехнологических мероприятий и дальнейшей разработки научных проблем в области земледелия совершенно необходимо знание климатических, погодных, а также почвенных условий изучаемой зоны, области и района.

Ульяновская область находится на востоке Восточно-Европейской равнины. По своей площади (37, 18 тыс. км²) она находится на 37 месте среди 49 областей Российской Федерации. Область делится на холмистое Предволжье (3/4 территории), расположенное на Приволжской возвышенности, и равнинное Заволжье (1/4 территории), лежащее на древних террасах долины Волги [14, 143].

Опытное поле ФГБОУ ВО Ульяновского ГАУ расположено в двадцати километрах от г. Ульяновска. Территория относится к западному левобережному Приволжскому агропочвенному району, размещенному на надпойменной террасе р. Волги. Основными почвообразующими породами являются древнеаллювиальные отложения в виде разнообразных песчаносуглинистых и песчано-глинистых осадков. На поверхности эти осадки представлены суглинками, что и обуславливает суглинистый характер почвенного покрова.

Основная территория опытного поля представлена черноземом выщелоченным среднемощным среднегумусным тяжелосуглинистым по механическому составу и лишь около 2 % всей территории занимает осолодевающий чернозем, который приурочен к блюдцеобразным понижениям, и болотная оподзоленная почва.

Характерной особенностью почвенного покрова опытного поля является неоднородное чередование вариантов выщелоченного чернозема по

мощности гумусного горизонта и глубине вскипания от 10 % соляной кислоты. На расстоянии нескольких десятков метров можно обнаружить среднемощные черноземы с глубиной вскипания от 33 до 120 см.

Содержание гумуса в верхнем горизонте колеблется от 5 до 7 %, а в конце первого метра — 0,80-0,92 %, мощность гумусовых горизонтов от 50 до 75 см. Линия вскипания от 10 % соляной кислоты проходит по нижней границе горизонта B_2 — с 58 см по ломаной линии:

 $A_{\rm n}$ 0-22 см — пахотный. Пылеватый комковатый, густо пронизан корнями растений, переход постепенный, средний суглинок. Переход резкий по плотности.

A₁ 22-30 см – перегнойный. Темно-серый, зернисто-комковатый, однороден по окраске, переход постепенный, средний суглинок.

В₁ 30-46 см – переходный. Черный с буроватым оттенком, зернистокомковатый, увлажнен, переход постепенный, средний суглинок.

 ${\rm B_2}\,46\text{-}58\,$ см — желтоватый, бесструктурный, рыхлый, переход постепенный, легкий суглинок.

В₃ 58-102 см – карбонатный, темно-бурый, бесструктурный, рыхлый, переход постепенный, легкий суглинок.

С 102-151 см – желтый, бесструктурный, рыхлый, влажный, переход постепенный, легкий суглинок, гумусовые языки и потеки до 115см.

По содержанию гумуса почва опытного участка относится к малогумусным от 5,35 до 5,15 %. Реакция среды в пахотном слое почвы слабокислая, рН 6,2-6,4. Содержание подвижного фосфора и обменного калия высокое, соответственно, 300-350 и 200-250 мг/кг почвы. Степень насыщенности почвы основаниями составляет 96,4-97,9 %, сумма поглощенных оснований 25,5-27,8 мг-экв./100 г почвы. В отношение запасов основных элементов питания растений необходимо также отметить, что несмотря на большое содержание азота, фосфора и калия в корнеобитаемом слое, в пахотном слое их содержание составляет от 15 до 30 % от общего запаса [70].

Механический анализ показывает, что изучаемая почва относится к тяжелосуглинистым иловато-крупнопылеватым разновидностям в поверхностном горизонте и среднесуглинистым — в нижних горизонтах. Типичные для опытного поля черноземы имеют относительно благоприятные водно-физические свойства и структурный состав, слабокислую реакцию, среднее содержание подвижного фосфора и обменного калия.

2.2. Метеорологические наблюдения в годы исследований

Общие климатические условия области характеризуются довольно заметным амплитудами климатологических элементов в отдельные периоды В силу географического положения региона и особенностей атмосферной циркуляции воздушных масс в атмосфере четко выражен сезонный ход температур. Умеренно-континентальный климат характеризуется теплым летом и умеренно холодной зимой. Область расположена на границе двух областей по степени суровости зимы: юго-запад Европейской равнины (область мягких зим с температурой от + 5 $^{\circ}$ C до - 10 $^{\circ}$ C) и северовосток (область холодных зим с температурой от - 10 $^{\circ}$ C до - 25 $^{\circ}$ C), что, естественно, отражается на непостоянстве характера зим в разные годы

Средняя многолетняя температура самого холодного месяца (январь) колеблется от $-12,5^{\circ}$ С (Сенгилеевский район) до -14° С (Новомалыклинский и Старомайнский районы). Абсолютный минимум температуры января -48° С (Сурское, Ульяновск, Канадей). Самым теплым месяцем является июль со среднемесячными температурами от $+18,6^{\circ}$ С (Майна) до $+20,4^{\circ}$ С (Сенгилей). Абсолютный максимум температуры $+41^{\circ}$ С (Новоспасское, Канадей). Таким образом, средняя годовая амплитуда температуры равна $38-34^{\circ}$ С при средней годовой температуре от $+3,1^{\circ}$ С (Б. Нагаткино, Солд. Ташла) до $+4,0^{\circ}$ С

Начало зимнего сезона характеризуется установлением устойчивого снежного покрова, который образуется в конце второй или начале третьей

декады ноября (17-26 ноября), а иногда и раньше с 11-30 октября. Удерживается снежный покров до первой половины апреля. Высота снежного покрова вначале небольшая (4-5 см), затем к середине января достигает 20-30 см и максимальная величина (40 см) — во второй декаде марта.

Глубина промерзания почв в среднем составляет 72-94 см. Максимальная глубина промерзания наблюдается в первой декаде марта и достигает 125 см. В отдельные годы почва промерзает на глубину лишь 10-15 см. Такая вариабельность обусловлена термическими условиями, высотой снежного покрова, гранулометрическим составом, влажностью почвы. Снежный покров полностью сходит к 8 апреля, в течение иногда 3-9 дней (правобережье), оставаясь лишь пятнами в лесах и понижениях оврагов и балок. Продолжительность снеготаяния в среднем составляет 19-23 дня

По обеспечению атмосферными осадками Ульяновская область относится к зоне с недостаточным увлажнением, хотя недостаток влаги не является значительным. Характерной особенностью следует считать перебои в выпадении осадков весной и в первую половину лета. Весенние засухи наносят значительный ущерб возделыванию сельскохозяйственных культур. Сезонность распределения основных метеоэлементов на территории области создает и общую сезонность явлений природы [14].

К неблагоприятным элементам климата относятся суховеи, ветры юго-восточных направлений. Весенние суховеи опасны, главным образом тем, что вызывают резкое падение весенних запасов влаги в почве вследствие избыточного расхода на испарение. По области очень интенсивных суховеев не наблюдается, кроме Заволжья, где они повторяются один раз в 10 лет. Слабые суховеи повторяются чаще и увеличиваются с северозапада на юго-восток и восток области.

Средняя многолетняя сумма осадков в области составляет 440 мм. Распределяются они по территории области неравномерно. Годовые суммы осадков в общем уменьшаются с юго-востока на северо-запад. Однако на территории Заволжья осадков выпадает на 20-25 % меньше, чем на остальной части области. За летний период выпадает около 170 мм осадков преимущественно в виде интенсивных кратковременных ливней, вследствие чего почва не успевает поглотить влагу, и большая ее часть теряется с поверхностным и внутрипочвенным стоком.

За холодный период (ноябрь-март) на территории области выпадает от 90 до 100 мм осадков. Самый влажный месяц — декабрь, абсолютная влажность воздуха зимой всего 2-3 мб., а относительная влажность, наоборот, высокая — 80-85 %.

Многолетние данные по сумме выпавших осадков и величине испарения показывают, что в пределах территории Ульяновской области преобладает непромывной тип водного режима, а в ряде случаев (в период весеннего снеготаяния в пониженных элементах рельефа) — периодически промывной, благоприятствующий развитию дернового процесса почвообразования.

Анализ климатических и агроклиматических показателей позволяет сделать вывод о некоторой неоднородности климата Ульяновской области. Различия между левобережным и правобережным районами обусловлены, в основном, особенностями рельефа.

Рост и развитие сельскохозяйственных культур в немалой степени определяется погодными условиями, которые складываются во время вегетации растений.

Для более полной характеристики закономерностей роста и развития сельскохозяйственных культур в зависимости от неизменяющихся условий за годы проведения опыта по отдельным периодам. Наблюдения за метеорологическими условиями за годы исследований (2018-2021 гг.) проводились на электронной метеостанции, размещенной в непосредственной близости от опытного поля.

Оценка динамики метеорологических условий за 2018-2021 гг. показала значительную вариабельность суммы осадков и температур, как за вегетационный период, так и в целом за годы (рис. 1, рис. 2).

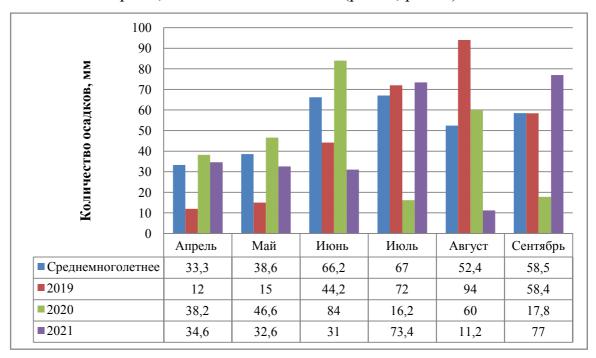


Рисунок 1 – Среднемесячное количество осадков в 2019-2021 гг., мм

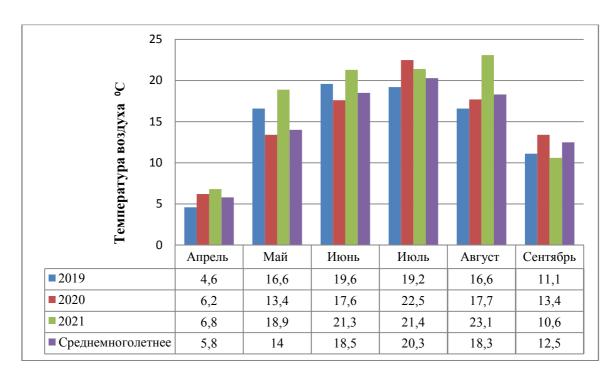


Рисунок 2 — Среднесуточная температура воздуха за 2019-2021 гг., ⁰С

Вегетационный период 2018 года.

Количество осадков за май-июль составило всего 64 мм, а ГТК=0,39 ед., что характеризуется как сильная засуха, при этом засушливыми оказались летние месяцы, что отрицательно сказалось на формировании урожая масличных культур.

Осень 2018 года характеризовалась обильными осадками и высокой температурой воздуха, что благоприятно сказывалось на прорастании семян и получении всходов растений озимой пшеницы. За осенние месяцы выпало 114,7 мм осадков с температурой в сентябре – 14,4 0 C, октябре - 6,0 0 C и в ноябре -2,9 0 C.

Перезимовка озимой пшеницы в 2018-2019 годах характеризовалась отсутствием большого снежного покрова и присутствием низких температур.

Вегетационный период 2019 года

Начальные фазы роста и развития озимой пшеницы сопровождались неблагоприятными погодными условиями, практически отсутствовали атмосферные осадки в сопровождении высокой температурой воздуха. В дальнейшем климатические условия сменились обильным выпадением осадков, за май-июнь выпало 101 мм осадков, при ГТК = 0,60.

Погодные условия при севе озимой пшеницы в 2019 году характеризовались большим количеством выпавших осадков — 58,4 мм, при стандартной для этого времени температурой воздуха — 12,5 °C. Хорошее увлажнение почвы, а также достаточное количество тепла дали возможность получить хорошие всходы озимой пшеницы. Уход в зиму сопровождался небольшим количеством осадков и не высокой температурой воздуха. Условия температурного режима были благоприятными для закалки озимой пшеницы. Условия перезимовки озимой пшеницы в 2019-2020 гг. характеризовались благоприятными факторами: устойчивый снежный покров, отсутствие колебаний температур.

Вегетационный период 2020 года

Погодные условия весенне-летней вегетации по количеству осадков и тепла в период май-июль были благоприятными. Большое количество осадков, выпавших в начале периода хорошо, отразилось на росте и развитии растений озимой пшеницы. Как видно из графика, в мае выпало 46,6 мм, июне - 84 мм и в июле — 16,2 мм атмосферных осадков при ГТК = 0,88

В предпосевной и посевной периоды 2020 года складывались благоприятные условия погоды, как видно из графика, в августе-сентябре выпало 77,8 мм. Начало перезимовки характеризовалось отсутствием снежного покрова и низкими температурами, достигавшими в первой и второй декадах декабря до - 13,5 $^{\circ}$ C.

Вегетационный период 2021 года

Вегетационный период 2021 года озимой пшеницы сопровождался незначительными осадками и высокой температурой воздуха, что отрицательно сказалось на росте и развитии растений озимой пшеницы. В мае и июне количество осадков было в 2 раза меньше среднемноголетних значений, также эти месяцы сопровождались высокой температурой воздуха - 21,3 $^{\circ}$ C при среднемноголетнем значении 18,5 $^{\circ}$ C (ГТК за май-июль = 0,73).

Таким образом, годы исследований были разными по погодным условиям, и полевые опыты были проведены в условиях недостаточной влагообеспеченности — 2018 год и слабой засухи — 2019 и 2021 годы, благоприятным по влагообеспеченности и температурному режиму — 2020 год.

Анализ метеорологических условий в годы исследований показывает резкую контрастность в годы проведения опытов с продолжительными почвенными и воздушными засухами в одни периоды и избыточным увлажнением – в другие, а также с оттепелями в зимний период.

2.3. Схема полевых опытов и их обоснование

Исследования по оценке эффективности приемов возделывания полевых культур проводились в многолетнем 3-х факторном стационарном

полевом опыте кафедры земледелия, растениеводства и селекции ФГБОУ ВО Ульяновский ГАУ (рис.3).

Изучались следующие виды севооборотов (Фактор А):

- 1) зернопаротравяной: **чистый пар озимая пшеница** горох яровая пшеница кострец + люцерна (выводное поле) яровая пшеница;
- 2) зернотравяной: **лен масличный озимая пшеница** горох яровая пшеница кострец кострец (выводное поле) яровая пшеница;
- 3) зернотравяной: **горчица белая озимая пшеница** люпин яровая пшеница люцерна (выводное поле) яровая пшеница;
- 4) зернотравяной: **рапс яровой озимая пшеница** нут яровая пшеница кострец + люцерна (выводное поле) яровая пшеница.

Объектами наших исследований являлись посевы масличных культур и озимой пшеницы (1 и 2 поля севооборотов).

Севообороты различались по составу культур, чтобы выявить эффективность предшественников в формировании урожая и воспроизводстве почвенного плодородия в севооборотах.

В экспериментальных севооборотах основная обработка почвы проводилась по двум технологиям (Фактор В): 1 вариант — комбинированная в севообороте заключающаяся в проведении вспашки на 25-27 см 2 раза за ротацию 6-польных севооборотов, плоскорезная обработка, безотвальное рыхление и дискование на 10-12 см; 2 вариант — минимальная: 1 раз за ротацию севооборота вспашка (на 20-22 см), культивация на 12-14 см и дискование на 10-12 см.

Обработка почвы под чистый пар и парозанимающие культуры проводилась по следующим схемам: B_1 – дискование на 10-12 см + вспашка на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см.

Под озимую пшеницу почва подготавливалась по схеме: двукратное дискование на 8-10 и 10-12 см + культивация на 6-8 см (приложение 3).

При возделывании изучаемых культур были предусмотрены 2 уровня защиты растений (фактор С) (приложение 4).

Масличные культуры: 1) уровень нормальных агротехнологий (минимальная защита растений), который заключается в применении гербицида Лорнет 0,2 л/га (клопиралид 300 г/л); 2) уровень интенсивных агротехнологий (адаптивно—интегрированная защита растений): протравливание семян — биофунгицид БисолбиСан (*Bacillus subtilis*, штамм Ч — 13, 1 л/га); внесение гербицида Лорнет 0,2 л/га (клопиралид 300 г/л) + биофунгицид БисолбиСан 1 л/га (*Bacillus subtilis*, штамм Ч — 13,). По мере необходимости вносились инсектициды Фастак 0,1 л/га (альфа —циперметрин, 100 г/л), Би58 Новый 0,7 л/га (диметоат, 400 г/л) и фунгицид Оптимо 0,5 л/га (пираклостробин, 200 г/л).

Озимая пшеница: 1) уровень нормальных агротехнологий (минимальная защита растений), который заключается в применении гербицида Примадонна 0,6 л/га (2,4 — Д, 200 г/л + флорасулам 3,7 г/л) 0,2 л/га; 2) уровень интенсивных агротехнологий (адаптивно —интегрированная защита растений): протравливание семян — Иншур Перформ (пираклостробин 40 г/л + тритиконазол 80 г/л) + биофунгицид БисолбиСан 1 л/га (*Bacillus subtilis*, штамм Ч — 13,); внесение гербицида Примадонна 0,6 л/га (2,4 — Д, 200 г/л + флорасулам 3,7 г/л) + биофунгицид БисолбиСан 1 л/га (*Bacillus subtilis*, штамм Ч — 13). По мере необходимости вносились инсектициды Фастак 0,1 л/га (альфа — циперметрин, 100 г/л), Би 58 Новый 0,7 л/га (диметоат, 400 г/га) и фунгицид Рекс Плюс (пираклостробин, 0,5 л/га).

Возделываемые сорта изучаемых культур: лен масличный — Северный; горчица белая — Рапсодия; рапс яровой — Солар; озимая пшеница — Саратовская 17. Норма высева всхожих семян для озимой пшеницы — 5,5, льна масличного — 8,0 млн., горчицы белой — 2 млн., рапса ярового — 0,7 млн. всхожих семян на 1 га.

Рисунок 3 – Общий вид стационарного опыта кафедры земледелия, растениеводства и селекции Ульяновского ГАУ, 2020 год.

Севообороты развернуты в пространстве и во времени, поля расположены на 6 блоках (по количеству полей), размещены методом расщепленных делянок, повторность опыта 3-кратная, размер делянок — от 140 до 560 м² посевной площади. Почва опытного участка — чернозём выщелоченный среднемощный среднесуглинистый по гранулометрическому составу. Дозы удобрений в опыте соответствуют региональным рекомендациям (табл. 1).

Таблица 1 – Дозы применяемых минеральных удобрений за годы исследований

Культура	Под предпосевную	При севе	Подкормка
	культивацию		
Масличные (лен, горчи-	100 кг/га аммиач-	100 кг/га диаммо-	_
ца, рапс)	ная селитра	фоска 10:26:26	
Озимая пшеница	_	100 кг/га диаммо-	200 кг/га амми-
		фоска 10:26:26	ачная селитра

2.4. Методика проведения наблюдений, учетов и анализов

Полевые опыты сопровождались лабораторно-полевыми наблюдениями, анализами и исследованиями:

- 1. Фенологические наблюдения проводились по фазам развития на делянках двух несмежных повторностей опыта в соответствии с методикой ГСУ. У озимой пшеницы отмечали следующие фенологические фазы: всходы, кущение, выход в трубку, колошение, цветение, молочная, восковая, полная спелость. У льна масличного: всходы, фаза елочки, бутонизации, цветение, созревание. У горчицы белой и рапса ярового: всходы, фаза розетки, стебелевание, бутонизации, цветение, созревание.
- 2. Густота стояния растений определяется путем подсчета растений в фазе всходов и перед уборкой в четырехкратном повторении в каждой делянке опыта. Подсчет проводится на пробных площадках 0,33 м² (рейка 111 см два рядка) внутри делянки. На основании подсчета определялась полнота всходов как процент от числа высеянных лабораторно всхожих семян и сохранность к уборке, процент от числа растений в фазе всходов.
- 3. Определение засорённости проводили количественно-весовым методом (основное сплошное обследование) весной перед внесением гербицидов и в фазу колошения. На каждой делянке накладывали рамку площадью 0,25 м² в четырёхкратной повторности, срезали все сорняки, делили по биогруппам, определяли массу и количество;
- 4. Влажность почвы определялась термостатно-весовым методом. Пробы почвы отбирались почвенным буром через каждые 10 см на глубину до 1 метра в трехкратном повторении на 1-й и 3-й повторности опыта в начале и в конце парования, а также в начале и в конце вегетации сельско-хозяйственных культур, запасы влаги, общий расход и коэффициент водопотребления расчетным путем [157].
- 5. Плотность почвы определяли осенью перед посевом и перед уборкой урожая по слоям 0-10, 10-20, 20-30 см в трехкратной повторности с

использованием цилиндра — бура для отбора образца почвы с ненарушенным сложением. Плотность почвы рассчитывалась по формуле: Y = a/p, а вес — абсолютно — сухой почвы, p — объем цилиндра 408 см^3 .

- 6. Определение массы пожнивных и корневых остатков после уборки культур проводили по методу Н.З. Станкова [179].
- 7. Оценка поражаемости озимой пшеницы корневыми гнилями и пораженность растений болезнями определяли согласно методическим указаниям по проведению производственных демонстрационных испытаний средств и методов защиты зерновых культур от болезней [115].
- 8. Учет урожая проводился комбайном «Террион 2010» путем сплошного обмолота всей массы с учетной делянки с пересчетом на 100% чистоту и 14 влажность (ГОСТ 27548 97);
- 9. Анализ структуры урожая определялась методом разбора сноповых образцов по методике Госсортсети (1971);
- 10. Качественные показатели зерна (масса 1000 зерен по ГОСТ 10842 76, натура зерна по ГОСТ ИСО 7971 2 2007, содержание белка по ГОСТ–10846–9, содержание клейковины по ГОСТ 10846 74, ИДК на приборе для определения качества клейковины ИДК 1);
- 11. Математическая обработка урожайных данных проводилась методом дисперсионного и корреляционного анализов [64].
- 12. Экономическая эффективность возделывания озимой пшеницы рассчитывалась на основе производственных затрат по технологическим картам,
- 13. Энергетическая оценка эффективности проводилась по методике Е.И. Базарова и др. [19] и В.М. Володина [114].

Глава 3. Плодородие почвы и фитосанитарное состояние посевов озимой пшеницы в звене севооборота

3.1 Плотность почвы

Каждая сельскохозяйственная культура имеет свои требования к плотности почвы, которые изменяются в течение всего вегетационного периода. Важной задачей технологических приемов является придание почве оптимальной плотности, которая является величиной переменной и претерпевает изменения в процессе окультуривания почв. На нее оказывают влияние такие агротехнические приемы, как предшественник, способ обработки почвы, гранулометрический состав, применение удобрений и т.д. После глубокого рыхления, как правило, плотность почвы сильно снижается. Однако в дальнейшем, подвергаясь влиянию выпадающих осадков, силе тяжести почвенных частиц, под воздействием почвообрабатывающих машин и орудий, она увеличивается и достигает определенной постоянной величины. Если величина этого показателя выше оптимальной для культуры, посев которой планируется, то почву необходимо рыхлить, если ниже – уплотнять [39, 59, 102, 149].

Доказано, что чрезмерная рыхлость почвы с объемной массой менее 1,1 г/см³ также неблагоприятно влияет на формирование корней, так как при следующем уплотнении возможен их обрыв. На таких почвах много теряется воды и верхний слой пересыхает, что особенно нежелательно для засушливых районов. Установлено, что среди озимых культур озимая пшеница — одна из самых требовательных к почвенным условиям выращивания. Однако при соответствующей технологии и на таких почвах можно выращивать до 40 ц/га и больше зерна пшеницы [25, 39, 59, 102, 149].

Значение плотности почвы в земледелии многообразно, но особенно велико оно в регулировании водного режима. Водопропускная способность почвы, а на землях с достаточным коллоидным комплексом и водо-

поглотительная способность, прежде всего, зависят от состояния рыхлости – плотности почвы [59, 149].

С плотностью почвы непосредственно связаны ее воздушный и тепловой режимы, а также условия жизни почвенной микрофлоры и, как следствие, накопление в доступной форме элементов питания. От физического состояния почвы зависит продуктивность сельскохозяйственных культур. Небольшое изменение в физических свойствах ведет к снижению поставки питательных веществ [25, 59, 149].

Плотность почвы во многом зависит от севооборота и места культуры в нем [25, 59, 149].

По данным Г.И. Казакова (2008) у черноземов с ярко выраженной макроструктурой равновесная плотность в пахотном слое не превышает более 1,0-1,3г/см 3 . Сероземы и многие подзолистые, солонцеватые, каштановые почвы самоуплотняются до 1,3-1,6 г/см 3 . В процессе многолетних исследований в Среднем Заволжье Г.И. Казаков пришел к выводу, что равновесная объемная масса одной и той же почвы зависит от времени года и вида сельскохозяйственных культур. При этом связь культурных растений с плотностью почвы различна [81].

Г.И. Казаков (2008) установил, что у зерновых культур требования к плотности почвы изменяются в зависимости от влагообеспеченности. При хорошем снабжении растений водой негативное действие уплотнения значительно уменьшается [75, 81].

Обработка почвы является главным фактором обеспечения оптимальной плотности почвы, а ее величина является диагностическим показателем необходимости механической обработки почвы, а также показателем качества и эффективности ее приемов [75].

Как показывают наши исследования, влияние предшественников на плотность сложения пахотного слоя почвы не оказывает существенного влияния. Так по чистому пару в среднем за годы исследований плотность

почвы в слое 0-30 перед посевом составила 1,16 г/см³, после льна масличного -1,18 г/см³, горчицы белой -1,20 г/см³ и после рапса ярового -1,19 г/см³ (табл. 2).

Таблица 2 – Влияние предшественников и обработки почвы на плотность сложения почвы под озимой пшеницей, г/см³ за 2019-2021 год.

Предшест-	Обработка	Слой	Посев	Возобновление	Уборка
венник	почвы Фак-	почвы,		– вегетации	
Фактор А	тор В	СМ			
F	- 1	0–10	1,11	1,21	1,28
	_	10–20	1,16	1,24	1,31
	\mathbf{B}_1	20–30	1,22	1,29	1,34
Пар чис-		0–30	1,16	1,26	1,31
тый		0–10	1,10	1,25	1,29
A_1	ъ	10–20	1,17	1,27	1,32
	B_2	20–30	1,25	1,31	1,36
		0-30	1,17	1,29	1,31
		0–10	1,13	1,26	1,29
	-	10–20	1,18	1,27	1,32
П	\mathbf{B}_1	20–30	1,24	1,31	1,36
Лен мас-		0–30	1,18	1,29	1,32
личный		0–10	1,14	1,27	1,29
A_2	B_2	10–20	1,20	1,28	1,33
		20–30	1,26	1,31	1,37
		0–30	1,18	1,30	1,33
		0–10	1,12	1,28	1,31
	ъ	10–20	1,19	1,27	1,32
Голичи	\mathbf{B}_1	20–30	1,26	1,31	1,34
Горчица		0–30	1,19	1,29	1,31
белая		0–10	1,17	1,27	1,30
A_3	D	10–20	1,20	1,29	1,33
	B_2	20–30	1,23	1,32	1,36
		0–30	1,20	1,31	1,33
		0–10	1,18	1,27	1,29
	D	10–20	1,18	1,27	1,30
Рапс яро-	B_1	20–30	1,20	1,31	1,35
		0-30	1,18	1,29	1,31
вой ${\stackrel{\scriptscriptstyle{1}}{ m A}}_{4}$		0–10	1,17	1,27	1,31
	Ъ	10–20	1,19	1,28	1,33
	B_2	20–30	1,22	1,32	1,36
		0-30	1,19	1,29	1,31
x	D. D. A		12		

 Φ актор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

В фазу возобновления вегетации произошло уплотнение почвы по всем предшественникам. Данный показатель составил 1,26-1,29 г/см 3 по чистому пару, 1,29-1,30 г/см 3 – по льну масличному, 1,29-1,31 г/см 3 – горчице белой и 1,29 г/см 3 – по рапсу яровому.

Исходя из этого, можно отметить, что за годы исследований плотность сложения пахотного слоя почвы практически не изменялась по предшественникам. Незначительное уплотняющее воздействие на сложение пахотного слоя оказывала минимальная обработка почвы, однако, плотность сложения не выходила за границы равновесной плотности, что в свою очередь говорит об отсутствии необходимости интенсивной (глубокой) обработки почвы и возможности минимализации основной обработки почвы под озимую пшеницу в условиях черноземных почв лесостепной зоны Поволжья.

3.2. Динамика содержания продуктивной влаги и водопотребление сельскохозяйственных культур

В условиях лесостепи Поволжья почвенная влага находится в минимуме и определяет урожайность сельскохозяйственных культур. В связи с этим изучению изменения запасов влаги почвы в зависимости от изучаемых агротехнических мероприятий следует уделять первостепенное внимание [25, 74, 197].

Вода в почве является одним из важнейших факторов эффективного плодородия почвы. Значение этого фактора существенно возрастает в связи с повышением требовательности культур к влаге [74, 197].

Запасы продуктивной влаги в почве могут рассматриваться в качестве критерия влагообеспеченности возделываемой в сельском хозяйстве культуры [37, 197].

Крайне низкие запасы влаги в почве являются одной из причин снижения урожайности и качества зерна озимой пшеницы. Так, сухая осень

часто приводит к запаздыванию с посевом озимой пшеницы, что способствует плохому закаливанию и гибели растения [16, 155, 184].

По сравнению с другими элементами плодородия почвы водный режим ее наиболее динамичен. Здесь прослеживается четкая зависимость между комплексом условий, факторов, количеством осадков и урожайностью выращиваемых культур. Необходимо наличие и оптимальное соотношение культур в севооборотах, различающихся по водному режиму. Несоблюдение этого правила даже в районах достаточного увлажнения в отдельные годы ставит режим влажности почвы в разряд минимума, то есть влага является лимитирующим фактором получения высоких урожаев.

Ввиду глубокого залегания грунтовых вод, а конденсационные процессы не имеют практического значения в накоплении воды, основным источником насыщения почвы влагой являются атмосферные осадки. Основной запас влаги в почве обеспечиваются в осеннее-зимний период. Летние осадки, иной раз в большом количестве, в большей своей массе не доходят до корневой системы растений, испаряясь с поверхности почвы.

В ряде опытов установлено, что в Среднем Поволжье положительный эффект глубокой обработки в увеличении запасов почвенной влаги в весенний период проявляется в годы с хорошим увлажнением в осеннезимние месяцы. В годы с количеством осадков на уровне среднемноголетних значений и ниже во вневегетационный период глубина и способ основной обработки почвы не имеет значения. Более того, в засушливых районах на плакорно-равнинных агроландшафтах предпочтительнее безотвальная осенняя обработка почвы, которая обеспечивает максимальное сохранение стерни и других остатков, способствует большему накоплению и сохранению почвенной влаги [37, 75, 197].

Роль предшественников озимой пшеницы в условиях дефицита влажности лесостепной зоны Поволжья определяется запасами достаточного количества продуктивной влаги в почве к посеву озимой пшеницы,

чтобы сформировать продуктивные всходы и закалку растений в осенний период их жизни [75, 145].

Вегетирующие парозанимающие культуры для формирования урожая используют влагу как выпадающих осадков, так и из почвы. Содержание влаги в почве во многом определяется сроком уборки парозанимающей культуры: чем он раньше, тем продолжительнее период для накопления влаги в почве к посеву озимой пшеницы.

В плане выбора предшественников для озимой пшеницы имеет значение содержание продуктивной влаги в почве после предшествующей культуры, так как получение всходов и формирование урожая имеют тесную связь с содержанием воды в почве и физиологическим водопотреблением посевов. Значимость предшественников озимых культур в условиях частого дефицита влажности лесостепного Поволжья определяется наличием достаточного количества доступной воды в почве к периоду их посева для получения дружных и полноценных всходов и нормального развития в осенний период жизни растений [16].

Наши исследования показали, что изучаемые предшественники озимой пшеницы формировали различный режим влажности почвы. Например, в чистых парах в среднем за 3 года исследований отмечалось сохранение продуктивной влаги и лишь в верхних слоях почвы (0-20 см) отмечалось накопление продуктивной влаги за счет выпавших осадков (табл. 3). При возделывании непаровых предшественников отмечался расход продуктивной влаги на формирование урожая и непродуктивное испарение, а сохранившиеся запасы влаги определялись продуктивностью непаровых культур и продолжительностью вегетации. За годы исследований общая продолжительность вегетационного периода масличных культур от посева до созревания имела вариабельность и у льна масличного изменялась от 97 до 106 суток, горчицы белой – от 87 до 99 суток, рапса ярового от 97 до 103 суток. Период от уборки до посева озимой пшеницы по льну

масличному составил 12-20 дней, горчице белой — 20-30 дней, по рапсу яровому — 14-20 дней.

Таблица 3 — Содержание продуктивной влаги в почве чистого пара и непаровых предшественников, мм (2018-2020 гг.)

Фактор A почвы Фактор B 0-20 0-100 0-20 0-100 2018 год Пар чистый B1 32 145 37 162 А1 B2 30 143 36 159 Лен масличный B1 31 144 13 60 А2 B2 28 141 11 58 Горчица белая B1 30 145 13 64 А3 B2 29 142 10 60 Рапс яровой B1 30 145 12 62 A4 B2 28 142 10 59 2019 год Пар чистый B1 26 133 35 123 А1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 Срочица белая B1 25 126 25 86 <trr< th=""><th>Культура</th><th>Обработка</th><th>Перед посев</th><th>ом культур</th><th>Перед</th><th>уборкой</th></trr<>	Культура	Обработка	Перед посев	ом культур	Перед	уборкой					
2018 год Пар чистый B1 32 145 37 162 А1 B2 30 143 36 159 Лен масличный B1 31 144 13 60 А2 B2 28 141 11 58 Горчица белая B1 30 145 13 64 А3 B2 29 142 10 60 Рапс яровой B1 30 145 12 62 А4 B2 28 142 10 59 2019 год Пар чистый B1 26 133 35 123 А1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 А2 B2 24 130 22 82 Ранс яровой А4 B1 25 126 25 86 А3	Фактор А		0–20	0-100	0–20	0-100					
Пар чистый B1 32 145 37 162 А1 B2 30 143 36 159 Лен масличный B1 31 144 13 60 А2 B2 28 141 11 58 Горчица белая B1 30 145 13 64 А3 B2 29 142 10 60 Рапс яровой B1 30 145 12 62 A4 B2 28 142 10 59 2019 год 2019 год Пар чистый B1 26 133 35 123 А1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 А2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 А3		тор В									
A1 B2 30 143 36 159 Лен масличный B1 31 144 13 60 А2 B2 28 141 11 58 Горчица белая B1 30 145 13 64 А3 B2 29 142 10 60 Рапс яровой B1 30 145 12 62 А4 B2 28 142 10 59 2019 год Пар чистый B1 26 133 35 123 А1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 А2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 А3 B2 24 122 23 84 Рапс яровой А4 B2 31 <											
Лен масличный B1 31 144 13 60 А2 B2 28 141 11 58 Горчица белая B1 30 145 13 64 А3 B2 29 142 10 60 Рапс яровой B1 30 145 12 62 А4 B2 28 142 10 59 Отранистый B1 26 133 35 123 А1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 А2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 А3 B2 24 122 23 84 Рапс яровой А4 B1 33 136 36 137 Пар чистый B1 33 136 36 137 </td <td>Пар чистый</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Пар чистый										
A2 B2 28 141 11 58 Горчица белая B1 30 145 13 64 А3 B2 29 142 10 60 Рапс яровой B1 30 145 12 62 А4 B2 28 142 10 59 2019 год Пар чистый B1 26 133 35 123 А1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 А2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 А3 B2 24 122 23 84 Рапс яровой А4 B1 33 136 36 137 Пар чистый B1 33 136 36 137 А2 B2 31 <td< td=""><td>A_1</td><td>B_2</td><td></td><td>143</td><td>36</td><td>159</td></td<>	A_1	B_2		143	36	159					
Горчица белая B1 30 145 13 64 А3 B2 29 142 10 60 Рапс яровой B1 30 145 12 62 A4 B2 28 142 10 59 2019 год Пар чистый B1 26 133 35 123 A1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 A2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 A3 B2 24 122 23 84 Рапс яровой А4 B2 23 124 22 83 2020 год Пар чистый B1 33 136 36 137 А1 B2 31 133 34 134 Лен масличный	Лен масличный	B_1	31	144	13	60					
A3 B2 29 142 10 60 Рапс яровой А4 B1 30 145 12 62 A4 B2 28 142 10 59 2019 год Пар чистый B1 26 133 35 123 A1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 A2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 A3 B2 24 122 23 84 Рапс яровой А4 B1 24 126 24 88 В2 23 124 22 83 2020 год Пар чистый B1 33 136 36 137 А2 B2 31 133 34 134 Рапс яровой	A_2	B_2			11						
Рапс яровой B1 B1 B2 28 142 10 59 2019 год Пар чистый В1 В2 26 133 35 123 A1 B2 25 130 33 120 Лен масличный В1 25 132 24 87 A2 B2 24 130 22 82 Горчица белая В1 25 126 25 86 A3 B2 24 122 23 84 Рапс яровой А4 В1 24 126 24 88 B2 23 124 22 83 В2 23 124 22 83 В1 33 133 34 134 В2 31 137 14 72 Горчица белая В2 31 137 14 72 Горчица белая В2 32 136 13 71 В2 33 1 136 13 71 Рапс яровой В1 33 138 14 69 В2 31 136 12 64 Среднее за 2018—2020 Пар чистый В1 30 138 36 141 В2 31 136 13 71 Рапс яровой В1 30 138 18 74 74 А2 В2 29 135 34 138 74 В2 29 135 34 138 74 А2 В2 28 133 15 72 Ранс яровой А4 В2 28 136 16 71 73	Горчица белая	B_1		145	13	64					
A4 B2 28 142 10 59 2019 год Пар чистый B1 26 133 35 123 A1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 A2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 A3 B2 24 122 23 84 Рапс яровой А4 B1 24 126 24 88 B2 23 124 22 83 Средне за 13 33 136 36 137 A1 B2 31 133 34 134 Лен масличный B1 34 138 17 76 A2 B2 31 137 14 72 Горчица белая B1 34 139 16	A_3	B_2	29	142	10	60					
Пар чистый В1 26 133 35 123 Лен масличный В1 25 132 24 87 А2 В2 24 130 22 82 Горчица белая В1 25 126 25 86 А3 В2 24 122 23 84 Рапс яровой А4 В1 24 126 24 88 Пар чистый В1 33 136 36 137 А2 В2 31 133 34 134 Лен масличный В1 34 138 17 76 А2 В2 31 137 14 72 Горчица белая В1 34 139 16 75 А3 В2 32 136 13 71 Рапс яровой В1 33 138 14 69 А4 В2 31 136 12 64 Среднее за 2018–2020 Пар чистый В1 30 138 36 141 А1 В2 29 135 34 138 Лен масличный В1 30 138 18 74 А2 В2 28 136 16 71 Горчица белая В1 30 138 18 74 А2 В2 28 136 16 71 Горчица белая В1 30 138 18 74 А2 В2 28 136 16 71 Горчица белая В1 30 137 18 75 А3 В2 28 133 15 72 Рапс яровой В1 30 137 18 75 А3 В2 28 133 15 72 Рапс яровой В1 30 137 18 75 Рапс яровой В1 30 137 18 75 Рапс яровой В1 30 137 18 75 Рапс яровой В1 29 136 17 73 Рапс яровой В1 29 136 17 73 Рапс яровой Д4 В1 29 136 17 73	Рапс яровой	\mathbf{B}_1	30	145	12	62					
Пар чистый А ₁ B ₁ 26 133 35 123 Лен масличный А ₂ B ₁ 25 130 33 120 Лен масличный А ₂ B ₂ 24 130 22 82 Горчица белая А ₃ B ₁ 25 126 25 86 А ₃ B ₂ 24 122 23 84 Рапс яровой А ₄ B ₁ 24 126 24 88 Рапс яровой А ₄ B ₁ 24 126 24 88 Рапс яровой А ₄ B ₁ 33 136 36 137 А ₁ B ₂ 31 133 34 134 Лен масличный B ₁ 34 138 17 76 А ₂ B ₂ 31 137 14 72 Горчица белая B ₁ 34 139 16 75 А ₃ B ₂ 32 136 13 71 Рапс яровой B ₁	A_4	B_2	28	142	10	59					
A1 B2 25 130 33 120 Лен масличный B1 25 132 24 87 А2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 А3 B2 24 122 23 84 Рапс яровой А4 B1 24 126 24 88 В2 23 124 22 83 2020 год Пар чистый B1 33 136 36 137 А1 B2 31 133 34 134 Лен масличный B1 34 138 17 76 А2 B2 31 137 14 72 Горчица белая B1 34 139 16 75 А3 B2 32 136 13 71 Рапс яровой B1 33 138			2019 год								
Лен масличный B1 A2 25 B2 132 24 87 А2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 25 86 А3 B2 24 122 23 84 Рапс яровой А4 B1 24 126 24 88 В2 23 124 22 83 22 83 2020 год Пар чистый B1 33 136 36 137 А1 В2 31 133 34 134 134 134 Лен масличный B1 34 138 17 76 А2 В2 31 137 14 72 76 Горчица белая B1 34 139 16 75 А3 В2 32 136 13 71 71 Рапс яровой B1 33 138 14 69 А4 В2 31 136 12 64 Среднее за 2018-2020 Пар чистый B1 30 138 36 14 А1 В2 29 135 34 138 Лен масличный B1 30 138 18 74 А2 В2 28 136 16 71 Горчица белая B1 30 137 18 75 А3 В2 28 133 15 72 Рацс яровой А. B1 29 136 17 73	Пар чистый	B_1	26	133	35	123					
A2 B2 24 130 22 82 Горчица белая B1 25 126 25 86 A3 B2 24 122 23 84 Рапс яровой А4 B1 24 126 24 88 B2 23 124 22 83 2020 год Пар чистый B1 33 136 36 137 A1 B2 31 133 34 134 Лен масличный B1 34 138 17 76 A2 B2 31 137 14 72 Горчица белая B1 34 139 16 75 A3 B2 32 136 13 71 Рапс яровой B1 33 138 14 69 A4 B2 31 136 12 64 Среднее за 2018-2020 Пар чистый	A_1	B_2	25	130	33	120					
Горчица белая B1 b2 24 122 23 84 Рапс яровой А4 В2 23 124 22 83 Пар чистый А1 В2 33 134 134 134 Пар чистый В1 34 138 17 76 А2 В2 31 137 14 72 Горчица белая В1 34 139 16 75 А3 В2 31 136 13 71 В2 31 137 14 72 Горчица белая В1 34 139 16 75 А3 В2 32 136 13 71 Рапс яровой В1 33 138 14 69 А4 В2 31 136 12 64 Среднее за 2018-2020 Пар чистый В1 30 138 36 141 А1 В2 29 135 34 138 Лен масличный В1 30 138 18 74 А2 В2 28 136 16 71 Горчица белая В1 30 138 18 74 А2 В2 28 136 16 71 Рапс яровой А4 В2 28 133 15 72 Рапс яровой А4 В2 28 133 15 72 Рапс яровой А4 В1 29 136 17 73	Лен масличный	B_1	25	132	24	87					
A3 B2 24 122 23 84 Рапс яровой А4 B1 24 126 24 88 2020 год Пар чистый B1 33 136 36 137 А1 B2 31 133 34 134 Лен масличный B1 34 138 17 76 А2 B2 31 137 14 72 Горчица белая B1 34 139 16 75 А3 B2 32 136 13 71 Рапс яровой B1 33 138 14 69 А4 B2 31 136 12 64 Среднее за 2018-2020 Пар чистый B1 30 138 36 141 А1 B2 29 135 34 138 Лен масличный B1 30 138 18 74	A_2	B_2	24	130	22	82					
Рапс яровой A ₄ B ₁ B ₂ 23 124 22 83 2020 год Пар чистый A ₁ B ₂ 31 133 34 134 Лен масличный A ₂ B ₂ 31 133 34 134 Бе В ₂ 31 137 14 72 Горчица белая В ₁ 34 139 16 75 A ₃ B ₂ 32 136 13 71 Рапс яровой В ₁ 33 138 14 69 В ₄ 31 136 12 64 Среднее за 2018–2020 Пар чистый А ₄ B ₂ 29 135 34 138 Лен масличный В ₁ 30 138 18 74 А ₂ В ₂ 28 136 16 71 Горчица белая В ₂ 28 133 15 72 Ранс яровой А ₄ В ₂ 29 136 17 73	Горчица белая	B_1	25	126	25	86					
Рапс яровой A4 B2 23 124 22 83 2020 год Пар чистый B1 33 136 36 137 A1 B2 31 133 34 134 Лен масличный B1 34 138 17 76 A2 B2 31 137 14 72 Горчица белая B1 34 139 16 75 A3 B2 32 136 13 71 Рапс яровой B1 33 138 14 69 A4 B2 31 136 12 64 Среднее за 2018-2020 Пар чистый B1 30 138 36 141 A1 B2 29 135 34 138 Лен масличный B1 30 138 18 74 A2 B2 28 136 16 71 Го	A_3	B_2	24	122	23	84					
В2 23 124 22 83 2020 год Пар чистый B1 33 136 36 137 А1 B2 31 133 34 134 Лен масличный B1 34 138 17 76 А2 B2 31 137 14 72 Горчица белая B1 34 139 16 75 А3 B2 32 136 13 71 Рапс яровой B1 33 138 14 69 А4 B2 31 136 12 64 Среднее за 2018—2020 Пар чистый B1 30 138 36 141 А1 B2 29 135 34 138 Лен масличный B1 30 138 18 74 А2 B2 28 136 16 71 Горчица бе	Davis anapay A	B_1	24	126	24	88					
Пар чистый B1 33 136 36 137 А1 B2 31 133 34 134 Лен масличный B1 34 138 17 76 А2 B2 31 137 14 72 Горчица белая B1 34 139 16 75 А3 B2 32 136 13 71 Рапс яровой B1 33 138 14 69 А4 B2 31 136 12 64 Среднее за 2018-2020 Пар чистый B1 30 138 36 141 А1 B2 29 135 34 138 Лен масличный B1 30 138 18 74 А2 B2 28 136 16 71 Горчица белая B1 30 137 18 75 А3 B2 28	Рапс яровои А4	B_2	23	124	22	83					
A1 B2 31 133 34 134 Лен масличный B1 34 138 17 76 A2 B2 31 137 14 72 Горчица белая B1 34 139 16 75 A3 B2 32 136 13 71 Рапс яровой B1 33 138 14 69 A4 B2 31 136 12 64 Среднее за 2018–2020 Пар чистый B1 30 138 36 141 A1 B2 29 135 34 138 Лен масличный B1 30 138 18 74 A2 B2 28 136 16 71 Горчица белая B1 30 137 18 75 A3 B2 28 133 15 72 Раце яровой А. B1 29 <			2020 год								
Лен масличный B ₁ 34 138 17 76 A ₂ B ₂ 31 137 14 72 Горчица белая B ₁ 34 139 16 75 A ₃ B ₂ 32 136 13 71 Рапс яровой B ₁ 33 138 14 69 A ₄ B ₂ 31 136 12 64 Среднее за 2018–2020 Пар чистый B ₁ 30 138 36 141 A ₁ B ₂ 29 135 34 138 Лен масличный B ₁ 30 138 18 74 A ₂ B ₂ 28 136 16 71 Горчица белая B ₁ 30 137 18 75 A ₃ B ₂ 28 133 15 72 Ранс яровой A ₄ B ₁ 29 136 17 73	Пар чистый	B_1	33	136	36	137					
A2 B2 31 137 14 72 Горчица белая B1 34 139 16 75 А3 B2 32 136 13 71 Рапс яровой B1 33 138 14 69 А4 B2 31 136 12 64 Среднее за 2018–2020 Пар чистый B1 30 138 36 141 А1 B2 29 135 34 138 Лен масличный B1 30 138 18 74 А2 B2 28 136 16 71 Горчица белая B1 30 137 18 75 А3 B2 28 133 15 72 Ранс яровой А4 B1 29 136 17 73	A_1	B_2	31	133	34	134					
Горчица белая B1 34 139 16 75 А3 B2 32 136 13 71 Рапс яровой B1 33 138 14 69 А4 B2 31 136 12 64 Среднее за 2018–2020 Пар чистый B1 30 138 36 141 А1 B2 29 135 34 138 Лен масличный B1 30 138 18 74 А2 B2 28 136 16 71 Горчица белая B1 30 137 18 75 А3 B2 28 133 15 72 Ранс яровой А4 B1 29 136 17 73	Лен масличный	B_1	34	138	17	76					
A3 B2 32 136 13 71 Рапс яровой А4 B1 33 138 14 69 B2 31 136 12 64 Среднее за 2018–2020 Пар чистый А4 B1 30 138 36 141 A1 B2 29 135 34 138 Лен масличный А2 B1 30 138 18 74 А2 B2 28 136 16 71 Горчица белая А3 B1 30 137 18 75 В2 28 133 15 72 Ранс яровой А4 B1 29 136 17 73	A_2	B_2	31	137	14	72					
Рапс яровой А ₄ B ₁ 33 138 14 69 Среднее за 2018–2020 Пар чистый А ₁ B ₁ 30 138 36 141 А ₁ B ₂ 29 135 34 138 Лен масличный А ₂ B ₁ 30 138 18 74 Корчица белая А ₂ B ₂ 28 136 16 71 Горчица белая А ₃ B ₁ 30 137 18 75 В ₂ 28 133 15 72 Ранс яровой А ₄ B ₁ 29 136 17 73	Горчица белая	B_1	34	139	16	75					
A ₄ B ₂ 31 136 12 64 Среднее за 2018–2020 Пар чистый B ₁ 30 138 36 141 A ₁ B ₂ 29 135 34 138 Лен масличный B ₁ 30 138 18 74 A ₂ B ₂ 28 136 16 71 Горчица белая B ₁ 30 137 18 75 A ₃ B ₂ 28 133 15 72 Ранс яровой А ₄ B ₁ 29 136 17 73	A_3	B_2	32	136	13	71					
Среднее за 2018–2020 Пар чистый B ₁ 30 138 36 141 А ₁ B ₂ 29 135 34 138 Лен масличный B ₁ 30 138 18 74 А ₂ B ₂ 28 136 16 71 Горчица белая B ₁ 30 137 18 75 А ₃ B ₂ 28 133 15 72 Ранс яровой А ₄ B ₁ 29 136 17 73	Рапс яровой	B_1	33	138	14	69					
Пар чистый B ₁ 30 138 36 141 A ₁ B ₂ 29 135 34 138 Лен масличный B ₁ 30 138 18 74 A ₂ B ₂ 28 136 16 71 Горчица белая B ₁ 30 137 18 75 A ₃ B ₂ 28 133 15 72 Ранс яровой A ₄ B ₁ 29 136 17 73	$ A_4$	B_2	31	136	12	64					
A1 B2 29 135 34 138 Лен масличный B1 30 138 18 74 A2 B2 28 136 16 71 Горчица белая B1 30 137 18 75 A3 B2 28 133 15 72 Ранс яровой А4 B1 29 136 17 73		Сре	днее за 2018–2	2020							
A1 B2 29 135 34 138 Лен масличный B1 30 138 18 74 A2 B2 28 136 16 71 Горчица белая B1 30 137 18 75 A3 B2 28 133 15 72 Рацс яровой А4 B1 29 136 17 73	Пар чистый	B_1	30	138	36	141					
A2 B2 28 136 16 71 Горчица белая B1 30 137 18 75 A3 B2 28 133 15 72 Раце провой А4 B1 29 136 17 73	-	B_2	29	135	34	138					
Горчица белая B1 30 137 18 75 A3 B2 28 133 15 72 Раце провой А4 B1 29 136 17 73	Лен масличный	B_1	30	138	18	74					
A3 B2 28 133 15 72 Раціс провой А4 B1 29 136 17 73	A_2	B_2	28	136	16	71					
A3 B2 28 133 15 72 Раце провой А4 B1 29 136 17 73	Горчица белая	B_1	30	137	18	75					
Рапс вровой Ад	•	B_2	28	133	15	72					
Рапс яровой A ₄ B ₂ 27 134 15 68	David and and A	B_1	29	136	17	73					
	ганс яровои A ₄	B_2	27	134	15	68					

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

В плане выбора предшественников для озимой пшеницы имеет значение содержание продуктивной влаги в почве после предшествующей культуры, так как получение всходов и формирование урожая имеют тесную связь с содержанием воды в почве и физиологическим водопотреблением посевов. За годы исследований установлено, что к севу озимой пшеницы наибольшее содержание доступной влаги в слове почвы 0-20 см, среди непаровых предшественников было отмечено после горчицы белой - 25-26 мм, тогда как после льна масличного и рапса ярового ее содержание составило 22-23 мм (табл. 4).

В среднем за годы исследований запасы продуктивной влаги после чистого пара перед посевом озимой пшеницы находились на уровне 140-147 мм, а после непаровых предшественников — от 102-104 мм по минимальной, до 105-109 мм по комбинированной обработке почвы. Среди непаровых предшественников оптимальным является горчица белая, ввиду уборки на 7-13 дней раньше по сравнению с льном масличным, яровым рапсом, период парования выше, что способствует накоплению продуктивной влаги в почве за счет выпадения осадков в августе.

Влияние основной обработки почвы на содержание доступной влаги в занятых парах показывает, что по всем предшественникам в слое 0-20 см некоторое преимущество было по комбинированной обработке почвы. По льну масличному, горчице белой, рапсу яровому содержание доступной влаги в слое 0-20 см было на 2 мм больше в сравнении с минимальной.

К моменту ухода растений озимой пшеницы в зиму содержание продуктивной влаги в почве увеличивалось за счет осадков и составило по чистому пару 172-176 мм, после льна масличного — 153-158 мм, горчицы белой — 153-156 мм и рапса ярового — 154-155 мм. Обработка почвы на накопление продуктивной влаги не оказывала существенного влияния.

Таблица 4 — Содержание продуктивной влаги в почве под посевами озимой пшеницы, мм (2018-2021 гг.)

Фактор A почвы A 0-20 0-100 0-20 0-100 0-20 0-100 0-20 0-100 Тар чистый B1 35 140 38 178 46 184 14 60 тый B2 38 136 36 174 46 186 13 59 Лен мас-личный B1 23 109 37 170 45 175 13 59 Лен мас-личный B2 21 106 34 166 44 174 13 57 Горища B1 26 110 37 169 45 175 13 59 Фала B2 26 105 34 163 44 174 13 57 Рапс ва B2 24 106 34 167 44 176 11 55 В2 24 106 34 167 44 176	Предше-	Обра-	-	посе-	Уход	в зиму	Возобно		-	убор-
A 2018–2019 гг. Пар чистый B1 35 140 38 178 46 184 14 60 тый B2 38 136 36 174 46 186 13 59 Лен мас- В1 23 109 37 170 45 175 13 59 Горчица B2 21 106 34 166 44 174 13 57 Горчица B1 26 110 37 169 45 175 13 59 белая B2 26 105 34 163 44 174 13 57 Рапс вровой B2 24 106 34 167 44 176 11 55 Рапс вровой B2 37 147 45 180 50 190 15 34 Лен мас- вровой В1 22 107 43 168 4	ственник	ботка			0.20	0.100				
Пар чистый В1 35 140 38 178 46 184 14 60	Фактор	почвы	0-20	0-100	0-20	0-100	0-20	0-100	0-20	0-100
Пар чистый B_1 35 140 38 178 46 184 14 60 тый B_2 38 136 36 174 46 186 13 59 Лен масличный B_1 23 109 37 170 45 175 13 59 Горчица B_1 26 110 37 169 45 175 13 59 Белая B_2 26 105 34 166 44 174 13 57 Рапс белая B_2 26 105 34 163 44 174 13 57 Рапс вровой B_2 24 106 34 167 44 176 11 55 Терчина B_1 36 149 46 184 54 198 16 36 Лен маслая B_2 21 101 42 164 43 178 <td>A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	A									
тый B_2 38 136 36 174 46 186 13 59 Лен масличный B_2 21 106 34 166 44 174 13 57 Горища B_1 26 110 37 169 45 175 13 59 Рапс B_1 23 107 35 165 45 174 12 58 правистый B_2 24 106 34 167 44 176 11 55 Пар чистый B_2 27 107 45 180 50 190 15 34 Пен масличный B_2 27 107 43 168 47 182 14 30 Рапс B_1 22 107 43 168 47 182 14 30 Рапс B_1 22 100 44 1160 41 179 15 30 Рапс B_1 22 100 44 160 41 179 15 30 Рапс B_1 22 100 42 167 46 183 13 27 Горища B_2 21 101 42 164 43 178 13 27 Горища B_1 22 102 42 167 46 183 13 24 рапс B_1 22 102 42 167 46 183 13 24 Пар чистый B_2 20 101 40 162 40 178 12 21 Пар чистый B_2 20 101 40 165 57 Тый B_2 37 146 45 161 53 180 17 74 Лен масличный B_2 21 100 36 135 48 170 16 71 Горища B_1 24 110 36 135 48 170 16 71 Горища B_1 22 100 34 167 54 185 17 75 Пар чистый B_2 20 101 36 135 48 170 16 71 Горища B_1 21 100 36 135 48 170 16 71 Горища B_1 23 106 34 130 48 170 16 71 Горища B_1 24 110 36 135 48 170 16 71 Горища B_2 20 103 37 135 48 170 16 71 Горища B_1 28 108 38 134 47 174 16 73 белая B_2 23 106 34 130 48 170 16 71 Горища B_1 28 108 38 134 47 174 16 73 белая B_2 27 103 35 135 48 171 16 74 Рапс B_1 23 105 32 132 48 173 16 70 Пар чистый B_2 21 100 34 133 47 171 16 75 Тый B_2 38 143 42 172 50 185 15 56 Лен масличный B_2 22 100 34 133 47 171 16 75 Торища B_1 23 105 39 156 46 177 14 51										
Лен мас- личный B_1 B_2 23 21 109106 37170 4545 17513 1359 Горчица белая B_2 B_2 26 105 11037 16045 44174 1357 Рапс яровой B_1 B_2 26 410 105410 34416 444174 1344 5743 5744 54176 114244 17643 1644 17641 1242410 1242410 164444 1764141 $12424141414141414241424443444444444444$	Пар чис-	B_1	35	140	38	178	46	184	14	60
личный B_2 21 106 34 166 44 174 13 57 Горчица B_1 26 110 37 169 45 175 13 59 евая B_2 26 105 34 163 44 174 12 58 рапс враме B_1 23 107 35 165 45 174 12 58 вровой B_2 24 106 34 163 44 176 11 55 2019-2020 гг. 2019-2020 гг. 21 37 147 45 180 50 190 15 34 Лен мас- пичный B_1 22 107 43 168 47 184 17 33 Рапс враровой B_2 23 104 41 160 41 179 15	тый	B_2	38	136	36	174	46	186	13	59
Горчица B_1 26 110 37 169 45 175 13 59 белая B_2 26 105 34 163 44 174 13 57 Рапс вровой B_1 23 107 35 165 45 174 12 58 яровой B_2 24 106 34 167 44 176 11 55 $2019-2020\mathrm{rr}$. Пар чис-ва B_1 36 149 46 184 54 198 16 36 37 147 45 180 50 190 15 34 Лен мас-пай B_1 22 107 43 168 47 184 17 33 36 47 184 17 33 32 21 101 43 165 47 184 <th< td=""><td>Лен мас-</td><td>B_1</td><td>23</td><td>109</td><td>37</td><td>170</td><td>45</td><td>175</td><td>13</td><td>59</td></th<>	Лен мас-	B_1	23	109	37	170	45	175	13	59
белая B2 26 105 34 163 44 174 13 57 Рапс вровой B1 23 107 35 165 45 174 12 58 уровой B2 24 106 34 167 44 176 11 55 2019—2020 гг. Пар чис- ва ва 36 149 46 184 54 198 16 36 Лен мас- ва В1 36 149 46 184 54 198 16 36 Лен мас- ва В1 22 107 43 168 47 182 14 30 Лен мас- ва В2 21 101 42 164 43 178 13 27 Рапс ва В2 23 104 41 160 41 179 15 30 Рапс ва <td>личный</td> <td>B_2</td> <td>21</td> <td>106</td> <td>34</td> <td>166</td> <td>44</td> <td>174</td> <td>13</td> <td>57</td>	личный	B_2	21	106	34	166	44	174	13	57
Рапс яровой B₁ в₂ 23 107 35 165 45 174 12 58 яровой B₂ 24 106 34 167 44 176 11 55 2019—2020 гг. Пар чистый B₁ 36 149 46 184 54 198 16 36 Тый B₂ 37 147 45 180 50 190 15 34 Лен мас- В₁ 22 107 43 168 47 182 14 30 личный B₂ 21 101 42 164 43 178 13 27 Горчица B₁ 24 110 43 165 47 184 17 33 белая B₂ 23 104 41 160 41 179 15 30 Рапс В₁ 22 102 102 42 167	Горчица	B_1	26	110	37	169	45	175	13	59
вровой B2 24 106 34 167 44 176 11 55 2019—2020 гг. Пар чистый B1 36 149 46 184 54 198 16 36 тый B2 37 147 45 180 50 190 15 34 Лен мастый B1 22 107 43 168 47 182 14 30 личный B2 21 101 42 164 43 178 13 27 Горчица B1 24 110 43 165 47 184 17 33 белая B2 23 104 41 160 41 179 15 30 Рапс B1 22 102 42 167 46 183 13 24 провой B2 20 101 40 162 40 178	белая	B_2	26	105	34	163	44	174	13	57
Пар чистый В1 36 149 46 184 54 198 16 36 149 145 180 50 190 15 34 Лен мастичный В2 21 101 42 164 43 178 13 27 Горчица В1 22 102 42 167 46 183 13 24 провой В2 20 101 40 162 40 178 12 21 Горчица В1 41 150 46 166 52 185 17 75 16 72 Пар чистый В2 23 106 34 130 48 170 16 71 Горчица В1 24 110 36 135 48 175 16 72 прочица В2 31 106 34 130 48 170 16 71 Пар чистый В2 23 105 32 132 48 173 16 70 провой В2 20 103 35 135 48 171 16 74 провой В2 23 105 34 133 48 171 16 74 провой В2 25 100 34 133 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 74 провой В2 27 103 35 135 48 171 16 75 провой В2 27 103 35 135 135 14 13 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	Рапс	B_1	23	107	35	165	45	174	12	58
Пар чистый B_1 36 149 46 184 54 198 16 36 тый B_2 37 147 45 180 50 190 15 34 Лен мастичный B_1 22 107 43 168 47 182 14 30 личный B_2 21 101 42 164 43 178 13 27 Горчица B_1 24 110 43 165 47 184 17 33 белая B_2 23 104 41 160 41 179 15 30 Рапс рапс рапс рапс рапс рапс рапс рапс р	яровой	B_2	24	106	34	167	44	176	11	55
Тый B_2 37 147 45 180 50 190 15 34 Лен мас- пичный B_1 22 107 43 168 47 182 14 30 личный B_2 21 101 42 164 43 178 13 27 Горчица белая B_1 24 110 43 165 47 184 17 33 белая B_2 23 104 41 160 41 179 15 30 Рапс яровой B_1 22 102 42 167 46 183 13 24 яровой B_2 20 101 40 162 40 178 12 21 Ист яровой B_2 20 101 40 162 40 178 12 21 Лен мас- вы B_1 41 150 46 166 52 185							ı	T .		
Лен мас- личный B_1 B_2 22 101 107 43 43 168 47 47 43 48 47 48 48 47 48 49 <td>-</td> <td>B_1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	B_1								
личный B_2 21 101 42 164 43 178 13 27 Горчица B_1 24 110 43 165 47 184 17 33 белая B_2 23 104 41 160 41 179 15 30 Рапс яровой B_1 22 102 42 167 46 183 13 24 яровой B_2 20 101 40 162 40 178 12 21 $2020-2021$ гг.Пар чис- тый B_1 41 150 46 166 52 185 17 75 </td <td>тый</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>50</td> <td></td> <td>15</td> <td></td>	тый	_					50		15	
Горчица белая B_1 белая 24 B_2 110 23 104 43 41 41 160 41 41 179 46 46 46 40 <td>Лен мас-</td> <td>B_1</td> <td>22</td> <td>107</td> <td>43</td> <td>168</td> <td>47</td> <td>182</td> <td>14</td> <td>30</td>	Лен мас-	B_1	22	107	43	168	47	182	14	30
белая B_2 23 104 41 160 41 179 15 30 Рапс яровой B_1 22 102 42 167 46 183 13 24 яровой B_2 20 101 40 162 40 178 12 21 Тай интераторой B_1 41 150 46 166 52 185 17 75 Тый B_2 40 146 45 161 53 180 17 74 Лен мас- B_1 24 110 36 135 48 175 16 72 личный B_2 23 106 34 130 48 170 16 71 Горчица B_1 28 108 38 134 47 174 16 73 6 слая B_2 27 103 35 135 48 171 16 74 Рапс B_1 23 105 32 132 48 171 16 72 Пар чис- 80 82 22 100 34 133 47 171 16 72 Пар чис- 81 37 146 43 176 51 189 16 57 7 7 7 7 7 7 7 7 7 7 7 8 8 17 14 14 14 14 14 14 14 14	личный	B_2	21	101	42	164	43	178	13	27
Рапс яровой B1 B1 B2 20 22 102 42 167 46 183 13 24 200 101 40 162 40 178 12 21 2020—2021 гг. Пар чис- тый B1 41 150 46 166 52 185 17 75 Тый B2 40 146 45 161 53 180 17 74 Лен масличный B1 24 110 36 135 48 175 16 72 личный B2 23 106 34 130 48 170 16 71 Горчица белая B1 28 108 38 134 47 174 16 73 белая B2 27 103 35 135 48 171 16 74 Рапс яровой B1 23 105 32 132 48 173 16 70 В среднем за 2018—2021 гг. Пар чистый B1 37 146 43 176 51 189 16 57 Тый B2 38 143 42 172 50 185 15 56 Лен масваны B1 23 109 39 158 47 177 14 54 личный B2 22 104 37 153 45 174 14 52 Горчица В1 26 109 39 156 46 178 15 55 белая B2 25 104 37 153 44 175 15 54 Рапс В1 23 105 36 155 46 177 14 51	Горчица	B_1	24	110	43	165	47	184	17	33
яровой B2 20 101 40 162 40 178 12 21 2020—2021 гг. Пар чистый B1 41 150 46 166 52 185 17 75 Тый B2 40 146 45 161 53 180 17 74 Лен мас- личный B1 24 110 36 135 48 175 16 72 личный B2 23 106 34 130 48 170 16 71 Горчица B1 28 108 38 134 47 174 16 73 белая B2 27 103 35 135 48 171 16 74 Рапс B1 23 105 32 132 48 171 16 72 В среднем за 2018—2021 гг. Пар чис- тый B1	белая	B_2	23	104	41	160	41	179	15	30
2020–2021 гг. Пар чистый B1 B1 B2 A0 B2 A0 B146 A5 B161 B2 A0 B166 B2 B1 B2 A0 B16 B2 B1 B2 B108 B1 B2 B108 B1 B2 B108 B1 B2 B108 B1	Рапс	B_1	22	102	42	167	46	183	13	24
Пар чистый B_1 41 150 46 166 52 185 17 75 тый B_2 40 146 45 161 53 180 17 74 Лен мас-личный B_1 24 110 36 135 48 175 16 72 Пичный B_2 23 106 34 130 48 170 16 71 Рапс ван B_1 28 108 38 134 47 174 16 73 Рапс ван B_1 23 105 32 135 48 171 16 74 Рапс ван B_1 23 105 32 132 48 171 16 70 Вореднем за $2018-2021$ гг. 171 16 72 Пар чистый B_2 38 143 42 172 50 185 15 56	яровой	B_2	20	101			40	178	12	21
Тый B2 40 146 45 161 53 180 17 74 Лен мас-личный B1 24 110 36 135 48 175 16 72 личный B2 23 106 34 130 48 170 16 71 Горчица белая B1 28 108 38 134 47 174 16 73 Рапс яровой B2 27 103 35 135 48 171 16 74 Рапс яровой B2 22 100 34 133 47 171 16 72 B2 22 100 34 133 47 171 16 72 B1 37 146 43 176 51 189 16 57 Тый B2 38 143 42 172 50 185 15 <t< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td></td><td>1</td></t<>				1			1	1		1
Лен мас- личный B ₁ B ₂ 24 23 110 36 34 34 130 48 48 170 16 16 71 71 Горчица белая B ₁ B ₂ 28 27 108 35 38 134 134 47 174 16 16 73 Рапс яровой B ₁ B ₂ 23 22 103 105 32 135 135 135 135 135 135 136 137 146 133 137 146 133 137 146 137 146 143 176 171 189 16 16 177 14 14 154 177 14 14 154 177 14 14 15 15 15 15 15 15 15 15 16 174 14 14 15 15 15 15 15 15 15 16 174 14 14 15 15 15 15 15 15 15 15 16 174 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Пар чис-									-
личный B2 23 106 34 130 48 170 16 71 Горчица белая B1 28 108 38 134 47 174 16 73 белая B2 27 103 35 135 48 171 16 74 Рапс яровой B1 23 105 32 132 48 173 16 70 яровой B2 22 100 34 133 47 171 16 72 В среднем за 2018—2021 гг. Пар чис- тый B1 37 146 43 176 51 189 16 57 тый B2 38 143 42 172 50 185 15 56 Лен мас- В1 23 109 39 158 47 177 14 54 личный B2 22 104 37 153 45	тый	B_2								
Горчица белая B1	Лен мас-		24	110	36	135	48	175	16	72
белая B2 27 103 35 135 48 171 16 74 Рапс яровой B1 23 105 32 132 48 173 16 70 яровой B2 22 100 34 133 47 171 16 72 В среднем за 2018—2021 гг. Пар чис- тый B1 37 146 43 176 51 189 16 57 тый B2 38 143 42 172 50 185 15 56 Лен мас- В1 23 109 39 158 47 177 14 54 личный B2 22 104 37 153 45 174 14 52 Горчица B1 26 109 39 156 46 178 15 55 белая B2 25 104 37 153 44 1	личный	B_2	23	106	34	130	48	170	16	71
Рапс яровой B1 B1 B2 23 105 32 132 48 173 16 70 в среднем за 2018—2021 гг. Пар чис- В1 З7 146 43 176 51 189 16 57 тый В2 38 143 42 172 50 185 15 56 Лен мас- В1 23 109 39 158 47 177 14 54 личный В2 22 104 37 153 45 174 14 52 Горчица В1 26 109 39 156 46 178 15 55 белая В2 25 104 37 153 44 175 15 54 Рапс В1 23 105 36 155 46 177 14 51	Горчица	B_1	28	108	38	134	47	174	16	73
яровой B2 22 100 34 133 47 171 16 72 В среднем за 2018—2021 гг. Пар чис- тый B1 37 146 43 176 51 189 16 57 тый B2 38 143 42 172 50 185 15 56 Лен мас- личный B1 23 109 39 158 47 177 14 54 Личный B2 22 104 37 153 45 174 14 52 Горчица B1 26 109 39 156 46 178 15 55 белая B2 25 104 37 153 44 175 15 54 Рапс B1 23 105 36 155 46 177 14 51	белая	B_2	27	103	35	135	48	171	16	74
В среднем за 2018—2021 гг. Пар чис- тый B1 37 146 43 176 51 189 16 57 тый B2 38 143 42 172 50 185 15 56 Лен мас- в1 23 109 39 158 47 177 14 54 личный B2 22 104 37 153 45 174 14 52 Горчица B1 26 109 39 156 46 178 15 55 белая B2 25 104 37 153 44 175 15 54 Рапс B1 23 105 36 155 46 177 14 51	Рапс		23	105	32	132	48	173	16	70
Пар чистый B1 37 146 43 176 51 189 16 57 тый B2 38 143 42 172 50 185 15 56 Лен мастичный B1 23 109 39 158 47 177 14 54 личный B2 22 104 37 153 45 174 14 52 Горчица B1 26 109 39 156 46 178 15 55 белая B2 25 104 37 153 44 175 15 54 Рапс B1 23 105 36 155 46 177 14 51	яровой	B_2	22					171	16	72
Тый B2 38 143 42 172 50 185 15 56 Лен мас- в1 23 109 39 158 47 177 14 54 личный B2 22 104 37 153 45 174 14 52 Горчица B1 26 109 39 156 46 178 15 55 белая B2 25 104 37 153 44 175 15 54 Рапс B1 23 105 36 155 46 177 14 51		·						,		
Лен мас- личный B ₁ B ₂ 23 22 109 104 39 37 158 153 47 45 177 14 14 52 Горчица белая B ₁ B ₂ 26 25 25 104 37 37 153 156 46 46 46 178 15 15 15 54 Рапс В ₁ 23 23 105 36 36 155 46 46 177 14 51	-	B_1								
личный B2 22 104 37 153 45 174 14 52 Горчица B1 26 109 39 156 46 178 15 55 белая B2 25 104 37 153 44 175 15 54 Рапс B1 23 105 36 155 46 177 14 51	тый	B_2	38	143	42	172	50	185	15	56
Горчица B1 26 109 39 156 46 178 15 55 белая B2 25 104 37 153 44 175 15 54 Рапс B1 23 105 36 155 46 177 14 51	Лен мас-	B_1	23	109	39	158	47	177	14	54
белая B2 25 104 37 153 44 175 15 54 Рапс B1 23 105 36 155 46 177 14 51	личный	B_2	22	104	37	153	45	174	14	52
Рапс B ₁ 23 105 36 155 46 177 14 51	Горчица	B_1	26	109	39	156	46	178	15	55
	белая	$\overline{\mathrm{B}_2}$	25	104	37	153	44	175	15	54
gropoğ P. 22 102 26 154 44 175 12 40	Рапс	B_1	23	105	36	155	46	177	14	51
APOBOH D2 22 102 30 134 44 1/3 13 49	яровой	B_2	22	102	36	154	44	175	13	49

 Φ актор B: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

С фазы возобновление вегетации озимой пшеницы весной до колошения происходило нарастание биомассы растений, что влекло за собой увеличение потребления влаги посевами. За годы исследований к уборке озимой пшеницы содержание продуктивной влаги уменьшилось до 49-57 мм и существенно не различалось по изучаемым предшественникам. Суммарный расход продуктивной влаги из почвы за период возобновление вегетации до уборки озимой пшеницы составил 118-127 мм.

Суммарное водопотребление посевами озимой пшеницы, возделываемой после различных предшественников, составило в среднем 284-290 мм, при этом 42,0-43,8 % влаги было использовано из почвы и 56,2-57,4 % — за счет атмосферных осадков (приложение \mathbb{N}_{2} 9, 10, 11, 12).

Для более объективной оценки расхода почвенной влаги на формирование урожая используется коэффициент водопотребления, который различался по изучаемым вариантам опыта (табл. 5).

Таблица 5 — Эвапотранспирация и коэффициент водопотребления озимой пшеницы после различных предшественников (в среднем за 2019-2021 гг.)

Показатели	Пар чис- тый	Лен мас- личный	Горчица белая	Рапс яро- вой
Урожай сухой надземной биомассы, т/га	9,29	6,79	7,27	6,97
Урожай зерна, т/га	5,16	3,77	4,04	3,87
Запасы продуктивной влаги перед возобновлением вегетации, мм	187	176	176	176
Осадки за период возобновление вегетации—уборка, мм	163	163	163	163
Запасы продуктивной влаги в слое почвы 1 м перед уборкой, мм	56	53	55	50
Общий расход продуктивной влаги, мм	290	286	284	289
Коэффициент водопотребления, ${\rm M}^3/{\rm T}^*$	312 562	421 759	391 703	415 747

Над чертой — затраты воды на формирование 1 тонны надземной массы m^3 ; Под чертой — затраты воды на формирование 1 тонны зерна m^3 ;

По нашим расчетам в среднем за годы исследований на формирование 1 тонны урожая надземной биомассы озимой пшеницы затрачивалось по чистому пару 312 м³ воды, после масличных культур данный показатель возрос после льна масличного до 421 м³/т, горчицы белой — 391 м³/т и рапса ярового — 415 м³/т. На 1 тонну зерна по чистому пару затрачивалось 562 м³ воды, а после льна масличного, горчицы белой и рапса ярового — 759, 703 и 747 м³ соответственно.

3.3. Накопление биогенных ресурсов и режим органического вещества почвы в звеньях севооборотов

Органическое вещество почв, несмотря на двухвековую историю его изучения, до сих пор привлекает внимание исследователей в связи с его особой ролью в формировании гумусового горизонта, химических и физических свойств почвы и ее плодородия. В последние десятилетия значительно возрос интерес к органическому веществу как важнейшему резервуару углерода в связи с проблемой изменения климата [107, 109, 189].

Органическое вещество почвы является самым крупным источником питательных веществ для растений. Высокая продуктивность сельскохозяйственных угодий обеспечивается запасом разлагающихся растительных остатков, корней, корневых выделений и микробной биомассы [164].

Гумусу принадлежит многогранная роль в почве, от его содержания зависят водно-воздушные, физические, физико-химические, агрохимические, микробиологические и экологические свойства почвы [156]. Его содержание в почвах определяется условиями и характером почвообразовательного процесса. Количество гумуса в пахотном слое разных типов почв сильно колеблется от 1,2 до 12-15 % [156].

Научно обоснованное чередование культур в сочетании с оптимальными системами обработки почвы и адаптивно-интегрированной защитой растений при биологизации земледелия оказывает синергетическое управляющее воздействие на плодородие почвы, ее агрофизические, агрохими-

ческие и биологические свойства и, следовательно, на продукционный процесс растений.

В результате использования почвы как основного средства производства важно сохранить ее здоровье (*soil health*) — функциональной биологической категории, отражающей состояние динамики активного биотического компонента в органоминеральном комплексе, важную роль в здоровье почвы принадлежит балансу органического вещества [3].

Научной предпосылкой регулирования режима органического вещества почвы служит закон возврата, который является частным случаем фундаментального закона сохранения вещества и энергии. Для поддержания здоровья почвы следует обеспечивать регулирования режима органического вещества почвы.

Основным источником органического вещества почвы под естественными фитоценозами являются остатки растений, количество которых зависит от типа растительных формации в ландшафтах.

Таблица 6 — Связь массы пожнивно-корневых остатков $(Y, \tau/\Gamma a)$ и соломы $(Y', \tau/\Gamma a)$ полевых культур с урожаем основной продукции $(X, \tau/\Gamma a)$ из расчета на воздушно — сухое состояние

$N_{\underline{0}}$	Культуры	Урожай-	Пожнивно-корнев	вые остат-	Солома	
Π/Π		ность ос-	ки			
		новной	уравнения рег-	r	уравнения рег-	r
		продукции,	рессии		рессии	
		т/га				
1	Озимая	1,71-5,20	$Y = 1,01x_1 - 2,01$	0,960	$Y = 1,52x_5 - 0,82$	0,840
	пшеница					
2	Лен	0,14–1,46	$Y = 1,02x_2 + 0,18$	0,800	$Y = 0.72x_6 + 0.16$	0,910
	масличный					
3	Горчица	0,73-1,68	$Y = 1,09x_3 - 0,19$	0,884	$Y = 0.84x_7 + 0.19$	0,849
	белая					
4	Рапс	0,77-1,70	$Y = 0.80x_4 + 0.20$	0,864	$Y = 1,04x_8 - 0,58$	0,921
	яровой					

Наши исследования показали, что масса растительных остатков полевых культур в достаточной степени определяется урожайностью основ-

ной продукции и может быть описана уравнениями регрессии, приведенными в таблице 6.

Обработка почвы оказывала влияние на ряд агрофизических, агробиологических, агрохимических и гидрологических свойств, тем самым создавая условия для формирования урожайности полевых культур. Продуктивность сельскохозяйственных культур возрастала по комбинированной обработке почвы по сравнению с минимальной.

Следует отметить, что в звеньях севооборотов приходная часть органического вещества почвы формировалась за счет пожнивно-корневых остатков полевых культур и их соломы, в звене севооборота чистый пар озимая пшеница поступление биогенных ресурсов в почву происходило только за счет озимой пшеницы.

Как показывают наши исследования, по накоплению основной продукции преимущество остается в звеньях с занятыми парами, наибольшее количество продукции было получено в звене горчица белая — озимая пшеница — 2,7-3,2 т/га, в звеньях севооборотов лен масличный — озимая пшеница и рапс яровой — озимая пшеница накопление основной продукции составило 2,6-3,1 т/га. Наименьшее количество основной продукции в звене чистый пар — озимая пшеница — 2,4-2,7 т/га.

Накопление биогенных ресурсов плодородия почвы (солома и пожнивно-корневые остатки культур) в звеньях севооборотов имело свои особенности. В паровом звене в почвы поступало 4,76 - 5,44 т/га биомассы, при этом на долю соломы приходилось 68,3-69,3 % и на долю пожнивно-корневых остатков – 30,7-31,8 % от общей биомассы.

9

Таблица 7 — Накопление биомассы, отчуждение урожая и поступление органического вещества в почву в звеньях севооборотов, т/га за 2018-2021 гг. (сухое вещество)

Севооборот	Обработка	Уровень		Накоплен	ие		Отчуждение	Γ	Іоступлени	e
	почвы	защиты	Основной	Соломы	ПКО	Всего	основной	Солома	ПКО	Всего
		растений	продукции				продукции			
Пар чистый – ози-	B_1	C_1	2,53	3,43	1,55	7,51	2,53	3,43	1,55	4,98
мая пшеница		C_2	2,71	3,71	1,73	8,15	2,71	3,71	1,73	5,44
	B_2	C_1	2,44	3,30	1,46	7,20	2,44	3,30	1,46	4,76
		C_2	2,64	3,60	1,66	7,90	2,64	3,60	1,66	5,26
Лён масличный –	B_1	C_1	2,47	5,32	2,44	10,23	2,47	5,32	2,44	7,76
озимая пшеница		C_2	2,69	5,88	2,84	11,41	2,69	5,88	2,84	8,72
	B_2	C_1	2,28	4,94	2,15	9,37	2,28	4,94	2,15	7,09
		C_2	2,51	5,53	2,57	10,61	2,51	5,53	2,57	8,1
Горчица белая –	\mathbf{B}_1	C_1	2,62	5,84	2,59	11,05	2,62	5,84	2,59	8,43
озимая пшеница		C_2	2,85	6,44	3,02	12,31	2,85	6,44	3,02	9,46
	B_2	C_1	2,39	5,37	2,22	9,98	2,39	5,37	2,22	7,59
		C_2	2,60	5,98	2,64	11,22	2,60	5,98	2,64	8,62
Рапс яровой – ози-	\mathbf{B}_1	C_1	2,59	5,36	2,46	10,41	2,59	5,36	2,46	7,82
мая пшеница		C_2	2,84	5,99	2,89	11,72	2,84	5,99	2,89	8,88
	B_2	C_1	2,37	4,95	2,18	9,50	2,37	4,95	2,18	7,13
		C_2	2,59	5,52	2,56	10,67	2,59	5,52	2,56	8,08

Фактов В: B_1 – комбинированная в севообороте; B_2 – минимальная;

 Φ актор $C: C_1$ – минимальная защита растений C_2 – адаптивно-интегрированная защита растений.

В звеньях севооборотов с непаровыми предшественниками поступление биогенных ресурсов плодородия почвы возросло до 7,08 - 8,72 т/га (горчица — озимая пшеница) до 7,59-9,46 т/га (рапс — озимая пшеница) со следующей структурой: солома 67,4 — 70,8 % и пожнивно-корневые останки 29,2 — 32,5 %.

Экстенсивное сельскохозяйственное землепользование в современных условиях входит в число ведущих факторов деградации почвенного покрова России и представляет реальную угрозу продовольственной безопасности. В результате почти полного прекращения работ по сохранению и повышению плодородия земель во всех регионах России идет быстрое нарастание процессов деградации почв, резкое снижение их плодородия [4, 68, 170].

Органическая часть почвы состоит на 80-90 % из гумуса и неразложившихся остатков растений и животных. Содержание в почве гумуса, представляющего собой биогенное образование сложного химического состава, является важным показателем плодородием почвы.

Гуминовые вещества являются наиболее крупным резервуаром углерода и азота как в наземных экосистемах, так и в биосфере в целом. Устойчивость этих специфических соединений определяется строением и химическим составом, а также динамическим равновесием между разрушением и синтезом их структурных единиц [156].

Гумус оказывает на урожай сельскохозяйственных культур прямое и косвенное действие. Прямое влияние гумуса состоит в использовании растениями содержащегося в нем азота и других питательных веществ, освобождающихся при его минерализации, косвенное — в улучшении условий произрастания на более гумусированных почвах и в повышении коэффициента использования элементов питания удобрений [4, 108].

Неизбежным и в то же время необходимым процессом в земледелии является минерализация гумуса. Это распад органических остатков до конечных продуктов, потребляемых растениями. Однако эти потери долж-

ны восстанавливаться за счет гумификации оставшихся в почве растительных остатков, поэтому одна из главнейших задач в экологическом земледелии — бесперебойное внесение органики. В условиях биологизации земледелия актуальной проблемой остается накопления гумуса в почве.

Оценка и прогнозирование гумусного состояния почв сельскохозяйственного назначения — важная научная и практическая задача, от результатов решения которой зависят почвенное плодородие, эффективность удобрений, величина и качество урожая сельскохозяйственных культур. Вследствие явного дефицита органических удобрений проблема сохранения гумуса в почве за последние годы существенно обострилась. Как известно, на плохо гумусированных почвах без дополнительных мер, направленных на повышение их плодородия, невозможно получить хороший урожай возделываемых культур [170].

По мнению многих ученых решение задачи по оптимизации режима органического вещества является прогнозирование гумусового баланса, [68, 108, 192] обосновали метод определения объемов минерализации гумуса по выносу азота урожаем, при этом учитывая сопряженность С:N в почвах. При этом в расходной статье гумусового баланса учитывается потребление азота из почвы на формирование урожая.

Учитывая это обстоятельство, необходимо использовать все ресурсы органического вещества полевых культур в севооборотах для компенсации потерь гумуса почвы.

Наши расчеты показали, что при сложившейся структуре источников энергетического материала некомпенсированные потери гумуса в паровом звене по вариантам опыта могут составить от 1238 до 1263 кг/га или 66,1 % к объему его минерализации и только третья часть (33,9 %) покрывается за счет соломы (11,2 %) и пожнивно-корневых остатков озимой пшеницы (22,7 %), при это по вариантам обработки почвы и уровням защиты растений существенных различий не выявлено (рис. 4; приложение 16).

В звене севооборота лен масличный — озимая пшеница прогноз баланса гумуса по вариантам опыта сложится с дефицитом от -237 до -278 кг/га или в среднем 31,0 % к объему минерализации, при этом 25,0 % потерь компенсируется за счет пожнивно-корневых остатков культур и 44,0 % за счет их соломы (приложение 17).

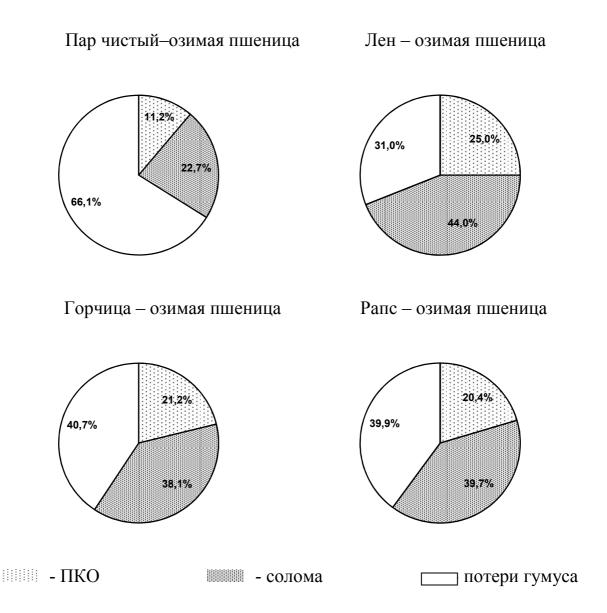


Рисунок 4 — Структура источников энергетического материала для компенсации потерь гумуса в звеньях севооборотов за 2018-2021 гг., %.

В звеньях севооборота – горчица – озимая пшеница и рапс яровой – озимая пшеница потери органического вещества возрастут до 361-473 кг/га или соответственно до 40,7 и 39,9 %, а за счет соломы и пожнивно-

корневых остатков будет компенсировано 20,4-21,2 % и соломы 38,1-39,7 потерь гумуса в почве (приложение 18, 19).

Таким образом, если в звеньях севооборотов с чистым паром потери гумуса за счет пожнивно-корневых остатков и соломы озимой пшеницы компенсируются только на одну треть (33,9 %), то в звеньях севооборотов с непаровыми предшественниками за счет биогенных ресурсов, создаваемых в агроэкосистемах, на 59,3-69,0 %. Результаты наших исследований свидетельствуют о том, что в условиях лесостепной зоны Поволжья замена чистых паров на занятые пары или использование непаровых предшественников является наиболее доступным способом пополнения ресурсов органического вещества черноземных почв.

3.4. Фитосанитарное состояние посевов озимой пшеницы

В условиях современного земледелия при частом несоблюдении севооборотов и концентрации посевов одними и теми же культурами возникает опасность увеличения пораженности посевов зерновых и бобовых культур корневыми гнилями, особенно при повторном их возделывании. Корневые гнили относятся к числу болезней, наносящих большой вред производству зерновых культур. Так, по данным В.А. Чулкиной [2], недоборы урожаев озимой и яровой пшеницы от болезни, в зависимости от зоны возделывания достигают половины валового сбора зерна.

Основным возбудителем корневых гнилей озимой и яровой пшеницы в условиях Заволжья Ульяновской области является почвенный гриб *Helminthosporium sativum* [2, 27, 116].

Несмотря на то, что чистый пар считается фитосанитарным полем, развитие корневых гнилей на озимой пшенице было больше, чем после непаровых предшественников, особенно рапса ярового и горчицы белой. Наименьшее распространение и количество больных растений озимой пшеницы было отмечено по предшественнику горчица белая -5,4%, рапс яровой -6,1% на варианте с протравливанием семян (табл. 16).

Оценка основной обработки почвы по влиянию на пораженность растений корневыми гнилями позволяет констатировать, что изучаемые варианты имеют равноценное влияние на данный показатель.

По нашим исследованиям существенный вклад в снижении распространения корневых гнилей озимой пшеницы принадлежит протравливанию семян (Иншур Перформ (пираклостробин 40 г/л + тритиконазол 80 г/л) + биофунгицид БисолбиСан 1 л/га (*Bacillus subtilis*, штамм Ч-13), при этом количество больных растений уменьшалось в среднем на 81-82 %.

Таблица 8 — Пораженность корневыми гнилями растений озимой пшеницы в зависимости от предшественников, обработки почвы и систем защиты растений в севооборотах за 2019-2021 год.

Предше-	Обра-	Защи-	Больн	ых растен	ний ,%	Развит	гие боле	зни, %
ственник	ботка	та рас-	По	По	По	По	По	По
Фактор А	почвы	тений	факто-	факто-	факто-	факто-	фак-	факто-
P	Фактор	Фак-	py C	ру В	py A	py C	тору	py A
	В	тор С					В	
Пар чис-	B_1	C_1	14,1	8,3	8,2	8,2	4,8	4,8
тый		C_2	2,5			1,4		
	B_2	C_1	14,0	8,2		8,2	4,8	
A_1		C_2	2,4			1,3		
Лен мас-	B_1	C_1	11,9	7,0	7,1	5,9	3,5	3,5
личный		C_2	2,0			1,0		
	B_2	C_1	12,2	7,2		6,0	3,5	
A_2		C_2	2,1			1,0		
Горчица	B_1	C_1	9,1	5,3	5,4	4,3	2,5	2,5
белая		C_2	1,5			0,7		
	B_2	C_1	9,2	5,4		4,1	2,4	
A_3		C_2	1,6			0,7		
Рапс яро-	B_1	C_1	10,3	6,1	6,1	5,0	3,0	3,0
вой		C_2	1,8			0,9		
	B_2	C_1	10,6	6,2		5,0	3,0	
A_4		C_2	1,7			0,9		

 Φ актор B: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см

Фактор $C: C_1$ – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Таким образом, исследования показывают высокую биологическую эффективность протравливания семян озимой пшеницы препаратами Иншур Перформ -0.5 л/га + БисолбиСан -1 л/га. Размещение озимой пше-

ницы после предшественников семейства крестоцветных — горчицы белой и рапса ярового способствовало снижению распространения корневых гнилей и бурой листовой ржавчины. Обработка почвы не оказывала существенного влияния на данный показатель.

Общеизвестно, что при несоблюдении научно-обоснованных севооборотов (нарушении закона плодосмена) возникает опасность увеличения пораженности посевов зерновых и бобовых культур болезнями, особенно при повторном их возделывании. Все это вызывает необходимость повышения биологического разнообразия агрофитоценозов, обоснования рациональных приемов обработки почвы и применения обоснованного применения средств защиты растений от вредных организмов.

Например, ржавчинные болезни нарушают водный режим растений, увеличивая транспирацию, вызывая снижение фотосинтетической активности листьев и нарушая процессы метаболизма в растениях, что приводит к уменьшению роста и запаздыванию фазы колошения. При этом резко снижается засухоустойчивость растений. Корневая система развивается слабо, плохо подает воду. Из-за нарушения функционального состояния устьиц усиливается транспирация и увеличивается физическое испарение воды через прорывы эпидермиса, вызываемые пустулами гриба.

Вследствие этого расход воды на единицу сухого вещества резко возрастает. Сильное поражение бурой листовой ржавчиной приводит к преждевременному созреванию посевов, а значит и значительному недобору урожая, особенно при недостатке почвенной влаги. Они приостанавливают процесс фотосинтеза в растительных тканях и приводят к снижению способности пшеницы производить зерно. Внедряясь в клетки растения, гриб-возбудитель не убивает его, а начинает забирать необходимые для развития и роста питательные вещества [160]. Зараженное растение становится слабым, щуплым, соответственно, снижается и урожайность. Ежегодные потери урожая от бурой ржавчины составляют 5-15 % [39].

Наши исследования показали, что развитие бурой листовой ржавчины ($Puccinia\ recondita$) изменялась по вариантам опыта. Наибольшее количество больных растений было выявлено после чистого пара — 44,7 %, тогда как после по льну масличному — 40,0 %, рапса ярового — 35,5 % и горчице белой — 34,6 % (табл. 9).

Таблица 9 — Пораженность листовой ржавчиной растений озимой пшеницы в зависимости от предшественников, обработки почвы и систем защиты растений в севооборотах (за 2019-2021гг.)

Пред-	Обра-	Защита	Больн	ых расте	ний, %	Разви	Развитие болезни, %		
шест-	ботка	расте-	По	По	По	По	По	По	
венник	почвы	ний	факто-	факто-	факто-	факто-	факто-	факто-	
Фактор	Фактор	Фактор	py C	ру В	py A	py C	ру В	py A	
A	В	C							
Поп	B_1	C_1	75,9	45,4		17,2	10,3		
Пар чистый	D]	C_2	14,9	43,4	44,7	3,4	10,5	10,1	
4истыи A ₁	B_2	C_1	74,2	43,9	44,7	16,6	9,9	10,1	
Al	\mathbf{D}_2	C_2	13,6	43,9		3,1	9,9		
Лен	B_1	C_1	67,2	40,2		12,8	7,5		
маслич-	D]	C_2	13,1	40,2	40,0	2,2	7,3	7,7	
ный	B_2	C_1	66,9	39,9	40,0	13,3	7,9	7,7	
A_2	\mathbf{D}_2	C_2	12,8	39,9		2,5	7,9		
Гории	B_1	C_1	59,1	34,4		11,3	6,7		
Горчи- ца белая	\mathbf{D}_{l}	C_2	9,7	34,4	34,6	2,0	0,7	6,9	
на ослая А ₃	B_2	C_1	59,5	34,8	34,0	11,9	7,1	0,9	
Α3	\mathbf{D}_2	C_2	10,1	34,0		2,2	7,1		
Ропо	B_1	C_1	60,1	35,6		12,7	7,6		
Рапс яровой – А ₄	Βl	C_2	11,0	33,0	35,5	2,4	7,0	7.6	
	Р.	C_1	60,0	35,5	33,3	12,9	7,7	7,6	
13 4	\mathbf{B}_2	C_2	10,9	33,3		2,5	1,1		

 Φ актор B: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

После чистого пара сложились наиболее благоприятные условия для развития патогена, поэтому развитие болезни составило 10,1 %. После горчицы белой с ее фитогенными свойствами количество больных растений и ее развитие было минимальным среди всех предшественников. Приемы

обработки почвы на распространение и развитие болезни существенного влияния не оказывали.

Существенный вклад в борьбу с болезнями растений внесли приемы защиты растений. По первому варианту защиты растений, где было предусмотрено только внесение гербицида, количество пораженных растений листовой ржавчиной составляло от 60,0 до 75,9 %, а биологическая эффективность фунгицидов достигала 80 %.

Из этого можно сделать вывод, что наибольший вклад в снижение количества больных растений и распространение болезни оказывают приемы защиты растений. Наименьшее распространение и количество больных растений озимой пшеницы было отмечено после горчицы белой с применением адаптивно-интегрированной системы защиты растений.

Высокая степень вредоносности в агрофитоценозах принадлежит сорным растениям, видовой состав и количество которых изменяется в зависимости от складывающихся условий. Сорные растения являются биологическим фактором, в значительной степени снижающим урожайность сельскохозяйственных культур и плодородие почвы. В борьбе с этим фактором ведущая роль принадлежит обработке почвы, рациональное использование которой возможно поддержание численности сорного компонента на безвредном уровне.

За годы проведения исследований в агрофитоценозах с озимой пшеницей встречались в основном малолетние сорные растения, которые были представлены яровыми ранними: марь белая — Chenopodium album L., мальва — Malva neglecta Wallr., чистец однолетний — Stachys annua L., овсюг пустой — Avena fatua L., горец вьюнковый — Poligonum convolvulus L., дымянка аптечная — Fumariaofficinalis L. И яровыми поздними: паслен черный — Solanumnigrum L., просо сорное — Panicummili aceumssp. Ruderale (Kitag.), щирица запрокинутая — Amaranthus retroflexus L., фиалка полевая — Viol aarvensis. Murr. Присутствовали зимующие сорные растения: мелколепестник канадский — Erigeron canadensis L., гулявник Лезеля —

 $Sisymbrium\ loeselii\ L.,\ подмаренник\ цепкий\ -\ Galiumaparine\ L.,\ ярутка полевая -\ Thlaspi\ arvense\ L.,\ дескурайния\ Софии\ -\ Descurania\ Sophia\ L.,\ Сокирни\ -\ Consolid\ aregalis\ S.$ Из многолетников единично встречались бодяк полевой -\ Cirsium\ arvense\ (L.)\ Scor.,\ вьюнок\ полевой\ -\ Convolvulus\ arvensis\ L..

Согласно нашим данным, во все годы исследований посевы озимой пшеницы по всем вариантам опыта были засорены в слабой и средней степени, не более 20 шт./м 2 с массой 3-12 г/м 2 . Согласно градации степени засоренности посевов, принятой в земледелии, где степень засоренности до 5,0 шт./м 2 очень слабая; 5,1-15,0 шт./м 2 – слабая; 15,1-50,0 шт./м 2 – средняя; 50,1-100,0 шт./м 2 – сильная и более 100 сорняков на м 2 очень сильная.

Весенний учет засоренности агроценозов озимой пшеницы показал, что наименьшее количество сорных растений было по чистому пару — 14,9 шт./м², с массой 10,3 г/м², несущественно больше сорных растений было выявлено после других предшественников — 15,1-16,6 шт./м², при массе - 11,8-12,9 г/ м² (табл. 10).

Данные, полученные в ходе исследований, показывают, что приемы обработки почвы оказывали влияние на количество и массу сорного компонента агрофитоценозов озимой пшеницы. По комбинированной обработке количество сорного ценоза была ниже, чем по минимальной обработке почвы.

Исходя из этого, можно сделать вывод, что по степени засоренности агрофитоценозы озимой пшеницы были засорены в слабой и средней степени. Негативное воздействие сорняков на урожайность озимой пшеницы происходит в фазу кущение — выход в трубку, когда растение формирует образование стебля с узлами, междоузлиями и зачаточным колосом, в этот период озимая пшеница слабо конкурируют с сорняками. В этот период растения озимой пшеницы особенно уъязвимы, также в эту фазу сорняки слабо угнетаются, они усиленно вегетируют, цветут и обсеменяются, создавая опасность засорения для следующих культур севооборота.

Таблица 10 — Засоренность и масса сорных растений в агроценозах озимой пшеницы в севооборотах (фаза кущения), шт./м²

Предше-	Обработ-	Защита	Годь	і иссле,	дова-	В сред	Средн	нее по ф	ракто-	
ственник	ка почвы	растений		ний	ний за 3 го- рам					
Фактор А	Фактор В	Фактор С	2019	2020	2021	да	A	В	C	
		C_1	12,7	<u>15,4</u>	14,6	14,2				
	B_1	C_1	12,1	6,0	12,9	10,3				
Пар чис-	\mathbf{D}_1	C	12,1	<u>15,1</u>	14,2	13,8	140			
тый		C_2	11,0	5,4	11,8	9,4	14,9 10,3			
		C_1	<u>15,4</u>	16,7	16,8	16,3	10,3			
A_1	B_2	CI	13,3	6,4	13,0	10,9				
	\mathbf{D}_2	C	14,6	16,0	<u>15,4</u>	15,3		1/10	16.1	
		C_2	13,0	6,1	12,0	10,4		14,8	16,1	
		C_1	<u>15,8</u>	<u>16,3</u>	<u>15,2</u>	<u>15,8</u>		11,0	12,0	
	B_1	C_1	12,8	8,3	13,6	11,6				
Лен мас-	\mathbf{D}_1	C	15,3	15,7	14,7	15,2	16.6			
личный		C_2	12,0	9,6	13,1	11,6	16,6			
		C	16,9	18,9	18,2	18,0	12,4			
A_2	D	C_1	14,6	10,2	15,7	13,5				
	B_2	C	16,2	18,4	18,0	17,5				
		C_2	13,7	9,5	14,8	12,7				
		C	13,1	14,8	15,1	14,3				
	D	C_1	11,3	9,0	12,5	10,9				
Горчица	B_1	C	12,5	14,5	14,6	13,9	1.5.1			
-		C_2	10,7	8,6	12,0	10,4	15,1			
белая			C	15,2	16,0	17,6	16,3	11,8		
A_3	D	C_1	13,3	10,0	16,4	13,2				
	B_2	C	14,8	15,7	17,0	15,8		16.0	1.5.5	
		C_2	12,6	9,6	15,6	12,6		<u>16,8</u>	<u>15,5</u>	
		C	14,9	16,5	15,7	15,7		12,6	11,6	
	D	C_1	13,0	9,5	13,1	11,9				
Рапс яро-	B_1	C	14,5	16,1	14,7	<u>15,1</u>				
-		C_2	12,7	10,8	12,3	11,9	<u>16,6</u>			
вой		C	17,2	18,8	18,2	18,1	12,9			
A_4	D	C_1	14,1	11,4	16,6	14,0				
	B_2	G	16,8	18,3	17,1	17,4				
		C_2	13,7	11,8	15,5	13,7				
	1,37	1,07	1,02	,						
	HCP ₀₅		0,81	0,72	0,65					
HCP ₀₅ A			0,69	0,53	0,51					
	0,41	0,36	0,32							
	HCР ₀₅ В и С		0,49	0,38	0,36					
	ертой – коли		0,29	0,25	0,23	<u> </u>		<u>,</u>	<u>, </u>	

Над чертой – количество сорняков шт./ м^2 ; под чертой масса сорняков г/ м^2

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Фактор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Таблица 11 — Засоренность и масса сорных растений в агроценозах озимой пшеницы в севооборотах (фаза колошения), шт./m^2

Предше-	Обработ-	Защита	Годь	і иссле,	дова-	В сред	Средн	нее по ф	ракто-
ственник	ка почвы	растений		ний	T	за 3 го-			
Фактор А	Фактор В	Фактор С	2019	2020	2021	да	A	В	С
		C	<u>6,4</u>	8,6	8,2	7,7			
	D	C_1	9,0	3,4	9,3	7,2		рам	
Пар чис-	B_1	C	5,9	8,3	8,0	7,4			
_		C_2	8,0	3,2	8,4	7,4 6,5	0.4		
тый		C	7,7	9,8	10,8	9,4	8,4 8,1		
A_1	D	C_1	11,9	6,2	10,6	9,6	8,1		
	B_2	C	7,3	9,6	10,6	9,2			
		C_2	10,7	6,7	9,9	9,1			
		C	6,7	9,1	8,4	8,1			
	D	C_1	10,8	10,1	11,4	10,8	10.8		0.2
Лен мас-	B_1	C	6,5	8,8	8,3	<u>7,9</u>		7,9 0.4	9 <u>,2</u> 10,8
личный		C_2	9,9	9,7	10,2	9,9		9,4	10,8
		C_1	9,9	10,5	12,2	10,9	<u>9,3</u>		
A_2	B_2	C_1	12,8	10,3	14,0	12,4	11,2		
	\mathbf{D}_2	C	<u>8,4</u>	10,1	<u>11,7</u>	10,1			
		C_2	11,4	9,8	13,3	11,5			
		C_1	<u>7,1</u>	8,2	9,0	<u>8,1</u>			
	D	C_1	10,6	10,0	11,3	10,6			
Горчица	B_1	C	6,3	7,8	<u>8,4</u>	<u>7,5</u>			
т ор ища белая		C_2	9,5	9,9	10,2	9,9			
		C	<u>7,4</u>	8,9	12,8	9,7	<u>8,7</u>		
A_3	B_2	C_1	13,8	10,3	15,0	13,0	11,4		
	\mathbf{D}_2	C	<u>7,1</u>	8,7	12,3	9,4			
		C_2	12,5	10,1	14,1	12,2			
		C	6,7	9,4	8,4	8,2			
	D	C_1	10,3	10,5	10,7	10,5		10.1	0 0
Рапс яро-	B_1	C	6,6	9,0	8,2	<u>7,9</u>			8,8 10,0
вой		C_2	9,3	9,4	9,8	9,5	9,6	11,4	10,0
		C_1	<u>8,5</u>	11,3	14,1	11,3	10,9		
A_4	D	C_1	12,1	10,6	13,3	12,0			
	B_2	C	8,1	10,8	13,6	10,8			
		C_2	11,6	10,0	12,8	11,5			
	1,14	1,16	1,21						
	0,74 0,57	0,80 0,58	0,63	_					
	HCP ₀₅ A				0,60				
	TION 5 5		0,37	0,40	0,31	1			
	НСР ₀₅ В и С		0,40	0,41	0,43				
	Antoŭ kolik		0,26	0.28	0,22	oŭ Macca			<u> </u>

Над чертой – количество сорняков шт./м 2 ; под чертой масса сорняков г/м 2

 Φ актор В: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Для более точного определения засоренности проводится повторный учет агрофитоценозов в период колошение – уборка (табл. 11).

Согласно нашим данным, в среднем за 3 года исследований степень засоренности посевов от фазы кущения до фазы колошения несколько изменяются в сторону уменьшения числа сорного компонента.

В этот период также видно преимущество чистого пара в снижение засоренности агроценозов пшеницы. Количество сорняков составило 8,4 шт./м² при массе 8,1 г/м², предшественники — лен масличный, горчица белая и рапс яровой показали меньшую эффективность в подавлении сорняков. Количество и масса сорняков в этих звеньях составили соответственно 9,3 шт/м² и 11,2 г/м², 8,7 шт/м² и 11,4 г/м², 9,6 шт/м² и 10,9 г/м².

Использование чистого пара как предшественника озимой пшеницы способствует снижению количества сорняков в посевах на 8,0-24,1 %, а их массу на 15,2-45,9 % по сравнению с непаровыми предшественниками (лен, горчица и рапс).

Таким образом, в условиях лесостепной зоны Поволжья для снижения фитосанитарной напряженности агрофитоценозов рекомендуется наряду с чистым паром размещать после горчицы белой и рапса ярового, осваивать адаптивно-интегрированную защиту растений, при этом химические и биологические препараты вносить при достижении экономических порогов вредоносности и минимальную обработку почвы, направленную на сохранение плодородия почвы и повышения экономической эффективности растениеводства.

Глава 4. Формирование урожая сельскохозяйственных культур в звеньях севооборотов

4.1. Структура посевов озимой пшеницы

Оптимальная густота стояния растений — это одно из основных условий, характеризующих продуктивность посевов. Густота стояния растений и густота стеблестоя — это количество растений и стеблей на единицу площади. Густота стеблестоя находится в прямой зависимости от: нормы посева; биологических особенностей сорта; погодных условий; почвенного плодородия; агротехники возделывания сельскохозяйственных культур.

Получение дружных и оптимальных всходов растений озимой пшеницы и других растений являются начальным и важным, а может и основным этапом в образовании высокоурожайного агроценоза. Начальные фазы роста и развития озимой пшеницы в первую очередь зависят от запасов продуктивной влаги перед посевом, а также температурного режима [185].

Для образования необходимой густоты посевов озимой пшеницы посев проводили с нормой высева 5,5 млн. всхожих семян на 1 га, в соответствии с рекомендациями для Ульяновской области [4].

В условиях зоны Среднего Поволжья применительно к зерновым культурам в производственных условиях величин и этих показателей (полнота всходов, выживаемость), как было указано нами выше, является довольно низкими, и необходима интегрированная система мер по их оптимизации, улучшения, прежде всего всеми агротехническими, биологическими и химическими средствами.

Подсчет растений в фазу всходов показал, что больших различий между вариантами опыта по факторам обработки почвы и защиты растений не отмечено, различия составляют всего 3-4 %, в пользу комбинированной обработки почвы на интенсивных уровнях защиты растений, но между предшественниками различия более значимы.

Таблица 12 – Структура посевов озимой пшеницы в зависимости от предшественников, обработки почвы и защиты растений за 2019-2021 годы.

Пред-	Обра-	Защита	Количе-	Полевая	Число	Общая	Сохран-
шест-	ботка	расте-	ство	всхо-	растений	выживае	ность, %
венник	почвы	ний Фолтор	всходов,	жесть, %	к убор-	мость,%	
Фактор	Фактор	Фактор С	\mathbf{m} т/м 2		ке, шт/м ²		
A	В						
Пар	B_1	C_1	448	81,5	411	74,7	91,7
чистый		C_2	456	82,9	427	77,6	93,6
4истыи A ₁	B_2	C_1	446	81,1	402	73,1	90,1
71		C_2	456	82,9	416	75,6	91,2
Лен	B_1	C_1	422	76,7	387	70,4	91,7
мас-		C_2	427	77,6	395	71,8	92,5
личный	B_2	C_1	415	75,5	375	68,2	90,4
A_2		C_2	421	76,5	383	69,6	91,0
Горчи-	B_1	C_1	430	78,2	390	70,9	90,7
ца бе-		C_2	433	78,7	401	72,9	92,6
лая	B_2	C_1	421	76,5	378	68,7	89,8
A_3		C_2	429	78,0	387	70,4	90,2
Рапс	B_1	C_1	419	76,2	386	70,2	92,1
яровой		C_2	428	77,8	398	72,4	93,0
яровои A ₄	B_2	C_1	420	76,4	376	68,4	89,5
A 4		C_2	426	77,5	387	70,4	90,8

 Φ актор B: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 — гербицид; C_2 — протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

В наших опытах за годы исследований полевая всхожесть озимой пшеницы во многом определялась наличием доступной для растений влаги в верхних слоях почвы на момент посева. В чистом пару к моменту посева озимой пшеницы (в среднем за годы исследований) запасы продуктивной влаги в слое 0-20 см находились на уровне 36-37 мм, что на 11-16 мм больше, чем после льна, горчицы и рапса. Наибольшее количество растений взошло после чистого пара — 448-456 шт./м², а полевая всхожесть составила 81,1-82,9 %.

Наилучшим непаровым предшественником по числу взошедших и сохранивших растений является горчица белая, где число взошедших растений составило 421-433 шт./м², что больше на 4-7 шт./м², чем после льна масличного и рапса яровому. Полевая всхожесть растений после горчицы белой составила 76,5-78,7 %, а после льна масличного и рапса ярового соответственно 75,5-77,6 % и 76,2-77,8 %.

Число взошедших семян (количество всходов) имело прямую связь с содержанием продуктивной влаги в почве в период посева (r = 0,671) и характеризовалось уравнением регрессии: y = 2,91x + 353,4.

В период вегетации растений происходит существенное изменение густоты стояния растений на единицу площади в зависимости от предшественников, систем защиты растений и складывающихся погодных условий осенне-зимнего и осенне-летнего периодов. Часть растений погибает от негативных условий зимовки, часть от вредных организмов, но в определенной степени общая выживаемость растений зависит и от приемов возделывания.

Число сохранившихся растений к уборке значительно уменьшилось, однако, можно отметить, что меньшее количество растений погибло после чистого пара по комбинированной обработке почвы — $411-427~\text{шт./m}^2$, по минимальной обработке это показатель составил $402-416~\text{шт./m}^2$, после льна масличного — $387-395~\text{шт./m}^2$ по комбинированной и $375-383~\text{шт./m}^2$ по минимальной обработке.

Также существенное влияние на сохранность растений оказывала система защиты растений. Наибольшая сохранность на всех вариантах опыта была замечена на адаптивно – интегрированной системе защите растений по чистому пару – 91,2-93,6 %, после льна масличного 91,0-92,5 %, горчицы белой 90,2-92,6 % и рапса ярового 90,8-93,0 %.

Следовательно, наши исследования говорят о том, что структура посевов озимой пшеницы зависит от изучаемых приемов возделывания и предшественников. Набольшая всхожесть и сохранность растений озимой пшеницы наблюдались после чистого пара и горчицы по комбинированной системе основной обработки на адаптивно-интегрированной системе защиты растений.

Основные элементы структуры урожая, характеризующие продуктивность растений, изменялись в зависимости от предшественников, обработки почвы и уровня защиты растений.

Таблица 13 — Структура урожая озимой пшеницы в зависимости от предшественников, обработки почвы и средств защиты растений за 2019-2021 годы.

Предшест-	Обработка	Защита рас-	Количест	во, шт./м²		Н
венник	почвы Фак-	тений		×	тая	зере шт.
Фактор А	тор В	Фактор С	ТĬ	ВНЫ Й	ТОС	30 3
			ени	дуктиві	tyкл гис	ECT!
			Растений	Продуктивных стеблей	Продуктивная кустистость	Количество зерен с колоса, шт.
				Прс		Кол
Пар чистый	B_1	C_1	411	555	1,35	32,8
A_1		C_2	427	574	1,34	33,7
	B_2	C_1	402	532	1,32	30,8
		C_2	416	553	1,33	31,5
Лен мас-	B_1	C_1	387	527	1,36	30,4
личный		C_2	395	536	1,36	31,1
A_2	B_2	C_1	375	507	1,36	28,9
		C_2	383	522	1,37	30,3
Горчица	B_1	C_1	390	539	1,38	29,9
белая		C_2	401	553	1,38	31,0
A_3	B_2	C_1	378	517	1,37	29,5
		C_2	387	532	1,38	30,0
Рапс яровой	B_1	C_1	386	522	1,36	29,7
A_4		C_2	398	541	1,36	30,3
	B_2	C_1	376	511	1,36	29,3
		C_2	387	526	1,36	29,7

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 — гербицид; C_2 — протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Продуктивная кустистость после чистого пара составляла 1,32-1,35 побега на одно растение; после льна масличного -1,36-1,37; после горчицы белой -1,37-1,38; после рапса ярового -1,36.

Урожайность зерновых культур определяется основными его элементами — числом растений на единице площади, продуктивной кустистостью, числом зерен в колосе.

Изучение биометрических показателей урожайности культуры позволило установить положительное влияние чистого пара, основной обработки почвы в севообороте и интенсивного уровня защиты растений на озерненность колоса. Наибольшая озерненность колоса озимой пшеницы наблюдалась по чистому пару по комбинированной обработке почвы — 32,8-33,7 шт., после льна масличного количество зерна в колосе составило 30,4-31,1 шт.

Следовательно, экспериментальные данные свидетельствуют, что технология возделывания озимой пшеницы с интенсивным использованием средств защиты растений обеспечивает повышение количественных показателей основных элементов структуры урожая, не выявив больших различий между вариантами обработки почвы.

4.2. Продуктивность масличных культур в звеньях севооборотов с озимой пшеницей

Высокие урожаи масличных культур для семян рапса ярового, льна масличного и горчицы белой до 20-25 ц/га могут быть достигнуты только путем адаптивной интенсификации их возделывания на основе систем управления в региональных зонах, улучшая тем самым применение каждой сельскохозяйственной технологии с учетом местных почвенно-климатических, организационных и экономических условий.

Россия, в том числе и Ульяновская область, имеют все условия для возделывания масличных культур в больших объёмах. В связи с этим становится актуальным разработать и усовершенствовать элементы регио-

нальной технологии возделывания рапса ярового, горчицы белой, льна масличного, позволяющие увеличить его урожайность, масличность, увеличивая высокий выход масла с 1 гектара.

Благодаря целому комплексу замечательных хозяйственно-полезных признаков лён масличный получает все большее распространение в земледелии лесостепной зоны Поволжья.

Анализ экспериментальных данных за 2018-2020 годы показал, что урожайность семян льна масличного варьировала в пределах 1,08-1,33 т/га. При этом на варианте комбинированной в севообороте системы основной обработки почвы урожайность составила — 1,29 т/га, по минимальной обработке почвы — 1,13 т/га, при $HCP_{0.5}$ 0,05-0,09.

Наши исследования показали, что при адаптивно-интегрированной защите растений урожайность льна была выше за счет ее сохранности и составила 1,25 т/га, тогда как на варианте с минимальной системой защиты растений -1,16 т/га.

Благодаря своим биологическим свойствам горчица белая в производственных условиях используется в качестве сидеральной культуры, но она имеет перспективу к расширению площади посева, прежде всего, как ценный предшественник озимых культур.

Наши исследования показали, что на продуктивность посевов горчицы белой оказывали влияние способы основной обработки почвы и варианты защиты растений. Урожайность горчицы белой в среднем за годы исследований составила 1,05-1,36 т/га. Нами выявлена четкая зависимость семенной продуктивности от способов обработки почвы. На варианте с комбинированной обработкой почвы урожайность составила 1,31 т/га, что на 0,24 т/га больше, чем с минимальной, при НСР_{0,5} за годы исследований 0,04-0,06 т/га.

При возделывании горчицы белой адаптивно-интегрированная защита растений также была более эффективна в сравнении с минимальной

системой, где урожайность составила 1,23 т/га, что больше, чем минимальной защите растений на 0,07 т/га.

Таблица 14 — Урожайность масличных культур в зависимости от обработки почвы и зашиты растений, т/га

Культура	Обра-	Защи-	Уро	жайност	ь семян,	т/га	В сре	еднем п	о фак-
	ботка	та						тору	
	почвы	расте-	2018	2019	2020	В	A	В	С
	Фак-	ний				сред-			
	тор В	Фак-				нем			
		тор С							
Лен маслич-	B_1	C_1	1,11	1,22	1,38	1,24	1,21	1,29	1,16
ный		C_2	1,19	1,35	1,46	1,33			
	B_2	C_1	1,00	0,94	1,31	1,08		1,13	1,25
		C_2	1,08	1,05	1,38	1,17			
Горчица бе-	B_1	C_1	1,15	1,08	1,55	1,26	1,19	1,31	1,16
лая		C_2	1,26	1,15	1,68	1,36			
	B_2	C_1	1,05	0,73	1,38	1,05		1,07	1,23
		C_2	1,10	0,76	1,42	1,09			
Рапс яровой	B_1	C_1	1,22	1,36	1,60	1,39	1,32	1,46	1,27
		C_2	1,39	1,47	1,70	1,52			
	B_2	C_1	1,16	0,77	1,48	1,14		1,18	1,37
		C_2	1,21	0,90	1,57	1,23			
2018		17; HCP ₀₅ A			C=0,06; HC	$CP_{05}AB = I$	$F_{\phi} < F_{T}; H$	CP ₀₅ AC	$= F_{\phi} < F_{T};$
		$HCP_{05}BC = F_{\phi} < F_{T}; HCP_{05} ABC = F_{\phi} < F_{T}$							
2019	$HCP_{05}=0,11$; $HCP_{05}A=0,05$; $HCP_{05}B$ и $C=0,04$; $HCP_{05}AB=0,08$; $HCP_{05}AC=F_{\phi};$								
	$ HCP_{05}BC = F_{\phi} < F_{\tau} : HCP_{05}ABC = F_{\phi} < F_{\tau}$								
2020		HCP_{05} =0,13; HCP_{05} A=0,06; HCP_{05} В и C=0,05; HCP_{05} AB= F_{ϕ} < F_{τ} ; HCP_{05} AC = F_{ϕ} < F_{τ} ; HCP_{05} ABC = F_{ϕ} < F_{τ} ; HCP_{05} ABC = F_{ϕ} < F_{τ}							
*	HCP ₀₅ BC		CP ₀₅ ABC	$= \Gamma_{\phi} < \Gamma_{T}$		2.5		D)	

Фактор В: B_I — дискование на 10—12 см + рыхление на 25—27 см; B_2 — дискование на 10—12 см + культивация на 12—14 см

 Φ актор C: C_1 — гербицид; C_2 — протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Урожайность рапса ярового варьировала в зависимости от изучаемых факторов — от 1,14 до 1,52 т/га, и более высокий урожай семян рапса ярового был получен также на комбинированной обработке почвы — 1,46, т/га, что на 0,28 т/га больше, чем по минимальной обработке почвы.

Уход за посевами должен помочь растениям развиваться и защитить их от действия неблагоприятных факторов (сорняки, болезни, вредители и др.). В ходе проведенных исследований установлено, что урожайность рапса ярового была выше на уровне интенсивных агротехнологий и составила 1,37 т/га, а на уровне нормальных агротехнологий – 1,27 т/га.

Основной показатель качества семян масличных культур — содержание растительного жира. По результатам наших исследований содержание масла в семенах льна масличного варьировало от 40,3 % до 42,2 %. Обработка почвы оказала существенное влияние на этот показатель, так по комбинированной обработке масличность возросла на 1,4 % в сравнении с минимальной (табл. 15).

Количество растительного жира в семенах горчицы белой колебалось в зависимости от вариантов опыта от 21,7 % на минимальной обработке почвы по первому уровню защиты растений до 23,6 % на комбинированной обработке и второму уровню защиты растений.

Таблица 15 — Масличность семян возделываемых культур в зависимости от обработки почвы и защиты растений за 2018-2020 год

Куль-	Обра-	Защита	Mac.	личност	6, %	В сред-	В сред	цнем по (ракто-
тура	ботка	расте-			,	нем за	-	ам за 3го,	-
Фактор	почвы	ний				3года	A	В	С
A	Фак-	Фактор							
	тор В	C	2018	2019	2020				
Лен	B_1	C_1	45,7	41,8	37,7	41,7	41,2	41,9	41,0
мас-		C_2	46,0	42,8	37,7	42,2			
личный	B_2	C_1	43,7	40,0	37,1	40,3		40,5	41,4
		C_2	44,2	40,1	37,6	40,6			
Горчи-	B_1	C_1	24,4	24,7	19,3	22,8	22,5	23,2	22,2
ца бе-		C_2	25,0	25,8	20,1	23,6			
лая	B_2	C_1	23,0	23,4	18,6	21,7		21,8	22,8
		C_2	23,3	23,6	18,9	21,9			
Рапс	B_1	C_1	42,3	43,7	40,1	42,0	41,8	42,9	41,1
яровой		C_2	46,0	44,6	40,9	43,8			
	B_2	C_1	42,5	41,8	36,4	40,2		40,7	42,5
		C_2	43,0	42,9	37,6	41,2			
	HCP ₀₅		0,66	0,59	0,63				
	HCP ₀₅ A		0,33	0,36	0,34				
Н	НСР ₀₅ В и С		0,24	0,26	0,21				

 Φ актор B: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 — гербицид; C_2 — протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

По данным наших исследований масличность семян рапса ярового также на варианте минимальной обработки почвы и минимальной защиты

растений имела тенденцию снижаться по сравнению с комбинированной обработкой почвы и адаптивно-интегрированной защитой растений.

Содержание масла семян рапса по комбинированной обработке составило 42,9 %, по минимальной обработке почвы масла содержалось 40,7 %.

Можно сделать вывод, что комбинированная обработка почвы в севообороте способствовала улучшению масличности исследуемых культур в сравнении с минимальной обработкой почвы.

Таблица 16 – Сбор масла возделываемых культур в зависимости от обработки почвы и защиты растений за 2018-2020 год

Культу-	Обра-	Защита	Урожай-	Маслич-	Сбор	В сре	днем по	о фак-
pa	ботка	расте-	ность,	ность, %	масла,	тора	ам за 3 1	года
Фактор	почвы	ний	т/га		кг/га	A	В	С
A	Фактор	Фактор						
	В	C						
Лен	B_1	C_1	1,24	41,7	517		539	176
маслич-	\mathcal{D}_1	C_2	1,33	42,2	561	497	339	476
ный	B_2	C_1	1,08	40,3	435	49/	455	518
	22	C_2	1,17	40,6	475		433	318
	B_1	C_1	1,26	22,8	287		304	258
Горчица	\mathcal{D}_1	C_2	1,36	23,6	321	269	304	238
белая	B_2	C_1	1,05	21,7	228	209	233	280
	22	C_2	1,09	21,9	239		233	280
	B_1	C_1	1,39	42,1	585		625	522
Рапс	D ₁	C_2	1,52	43,8	666	554	625	522
яровой	B_2	C_1	1,14	40,2	458	334	192	506
		C_2	1,23	41,2	507		483	586

 Φ актор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Фактор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Сбор масла изучаемых культур зависел от урожайности и масличности семян. Оценка продуктивности масличных культур по выходу масла

показала, что наиболее продуктивными являются посевы рапса ярового, где его сбор в среднем по вариантам составил 554 кг/га. Содержание жира в семенах рапса на минимальном уровне защиты растений составило 41,1 % с выходом масла 522 кг/га, а на адаптивно-интегрированном при содержании жира 42,5 % сбор масла возрос до 586 кг/га (табл. 15, 16).

Оценка продуктивности рапса ярового по сбору масла показала, что больше растительного жира содержалось в семенах, возделываемых по комбинированной обработке – 42,8 % с валовым сбором масла 625 кг/га. В семенах рапса по минимальной обработке почвы содержалось 40,7 % с выходом жира 483 кг/га.

Количество растительного жира в семенах горчицы колебалось от 21,7 % до 23,6 %, при этом выход растительного жира с одного гектара составил от 228 кг до 321 кг на 1 га. Влияние систем защиты растений на сбор масла показал, что большая продуктивность отмечалась на адаптивно-интегрированной системе по сравнению с уровнем нормальных агротехнологий. Более высокий валовой сбор масла был получен по комбинированной обработке почвы — 304 кг/га, что на 71 кг/га больше, чем по минимальной.

По данным наших исследований, посевы льна масличного по комбинированной обработке почвы на втором уровне защиты растений имели более высокую масличность и более высокий сбор масла. В среднем за годы исследований сбор масла составил от 435 до 561 кг/га.

4.3. Урожайность и качество зерна озимой пшеницы

Урожайность озимой пшеницы в годы исследований изменялась в зависимости изучаемых факторов и по годам, что определялось погодными условиями вегетационных периодов.

В условиях 2019 года, когда сложились засушливые условия в мае и июне, выпало 69,2 мм осадков (ГТК = 0,63), более высокая урожайность была получены по чистому пару, которая составила от 3,81 т/га (мини-

мальная обработка почвы и первый уровень защиты растений) до 4,41 т/га (комбинированная обработка почвы в севообороте, адаптивно-интегрированная защиты растений). После непаровых предшественников урожайность озимой пшеницы была ниже в среднем на 8,85-0,92 т/га или 20,5-22,3 % в равнение с чистым паром. Как и после чистого пара, пре-имущество сохранилось за комбинированной обработкой почвы и адаптивно-интегрированной защитой растений (табл. 17).

В благоприятных условиях для развития растений озимой пшеницы в 2020 году ее урожайность была самой высокой за все годы исследований, в 2020 году сложились идеальные условия водно-теплового режима, ГТК за май-июнь составил 1,38 ед. После чистого пара по комбинированной обработке почвы на уровне интенсивных агротехнологий урожайность озимой пшеницы достигала 7,55 т/га (в среднем по предшественнику – 7,32 т/га), после горчицы белой урожайность в среднем по вариантам она составила 6,29 т/га, рапса ярового – 5,81 т/га и льна маличного – 5,55 т/га. Несмотря на достаточную влагообеспеченность посевов в 2020 году, преимущество чистого пара сохранилось, при этом урожайность по сравнению со звеном со льном возросла на 31,9 %, рапсом – на 25,9 % и с горчицей – на 16,3%.

В засушливом 2021 году (ГТК за май-июнь = 0,52) преимущество чистого пара возросло, и урожайность повысилась с 2,47-2,61 т/га после непаровых предшественников до 4,03 т/га по чистому пару, или на 54,4-63,1 %.

По данным наших исследований, в агроценозах озимой пшеницы при комбинированной обработке почвы в севообороте на адаптивно-интегрированной системе защиты растений за 2019-2021 годы складывались более благоприятные условия для роста и развития данной культуры (хорошие запасы продуктивной влаги, малая засоренность, большая густота стояния растений, меньше болезней) по всем изучаемым предшественникам.

Таблица 17 – Урожайность озимой пшеницы в зависимости от обработки почвы и защиты растений после разных предшественников за 2019-2021 год

Предшественник	Обработка	Защита рас-	Ур	эжайность, т	г/га	В сред-	В сред	В среднем по факторам		
Фактор А	почвы	тений Фак-				нем за 3	A	В	С	
	Фактор В	тор С	2019	2020	2021	года				
Пар чистый	B_1	C_1	3,95	7,30	3,90	5,05				
A_1		C_2	4,41	7,55	4,30	5,42	£ 16			
	B_2	C_1	3,81	7,08	3,76	4,88	5,16			
		C_2	4,33	7,33	4,17	5,28		4.20	4.02	
Лен масличный	B_1	C_1	3,17	5,52	2,38	3,69		4,30	4,02	
A_2		C_2	3,51	5,86	2,74	4,04	2 77			
	B_2	C_1	3,00	5,24	2,20	3,48	3,77			
		C_2	3,43	5,56	2,57	3,85				
Горчица белая	B_1	C_1	3,04	6,34	2,52	3,97		4		
A_3		C_2	3,42	6,73	2,88	4,34	4.04			
	B_2	C_1	2,96	5,84	2,36	3,72	4,04			
		C_2	3,40	6,25	2,69	4,11		4 1 1	4.20	
Рапс яровой	B_1	C_1	3,19	5,73	2,42	3,78		4,11	4,39	
A_4		C_2	3,49	6,17	2,78	4,15	2.07			
	B_2	$\overline{C_1}$	3,00	5,53	2,28	3,60	3,87			
	_	C_2	3,36	5,81	2,64	3,94				
2019 год	HCP ₀₅ =0,23; H	CP ₀₅ A=0,11; HC	Р ₀₅ В и С=0.	08; HCP ₀₅ A1	$B = F_{\phi} < F_{\tau}$; H	$ICP_{05}AC = F_{d0}$	<f<sub>T; HCP₀₅I</f<sub>	$BC = F_{\phi} < F_{\tau}$;	HCP ₀₅	
	$ABC = F_{\phi} < F_{T}$, ,	,	,	4 ->	т	-,	τ ->		
2020 год	1	CP ₀₅ A=0,13; HC	Р ₀₅ В и С=0.	09; HCP ₀₅ A1	$B = F_{\phi} < F_{\tau}; H$	$ICP_{05}AC = F_{d0}$	<f<sub>T; HCP₀₅I</f<sub>	$BC = F_{\phi} < F_{\tau};$	HCP ₀₅	
	$ABC = F_{\phi} < F_{T}$, ,		,	τ ''	2- Y	., 00	Ŧ */		
2021 год	HCP ₀₅ =0,15; H	CP ₀₅ A=0,08; HC	Р ₀₅ В и С=0.	05; HCP ₀₅ A1	$B = F_{\phi} < F_{T}; H$	$ICP_{05}AC = F_{d0}$	<f<sub>T; HCP₀₅I</f<sub>	$BC = F_{\phi} < F_{T};$	HCP ₀₅	
	$ABC = F_{\phi} < F_{T}$,		r	T	,	r		

Фактор В: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см; Фактор С: C_1 — гербицид; C_2 — протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

В среднем за 3 года исследований в севообороте после чистого пара урожайность озимой пшеницы по вариантам варьировала на комбинированной обработке от 5,05 до 5,42 т/га и от 4,88 до 5,28 т/га с минимальной обработкой соответственно минимальной системе защиты растений и адаптивно – интегрированной.

В севообороте после горчицы белой урожайность озимой пшеницы была довольно высокой, и она составляла на варианте с комбинированной обработкой и соответственно по уровням защиты 3,97-4,34 т/га, а на варианте с минимальной обработкой 3,72-4,11 т/га. Наименьшая урожайность озимой пшеницы была получена после льна масличного от 3,69 до 4,04 и от 3,48 до 3,85 т/га соответственно вариантам обработки почвы и защиты растений.

Таким образом, оценка предшественников озимой пшеницы по влиянию на ее урожайность позволила расположить их в следующий ряд (урожайность указана за 2019-2021 гг.): после чистого пара — 5,16 т/га > после горчицы белой — 4,04 т/га > после рапса ярового — 3,87 т/га > после льна масличного — 3,77 т/га.

Дисперсионный анализ урожайности озимой пшеницы за 2019-2021 показал, что 70,4-89,7 % изменений уровня урожайности вызваны влиянием предшественников, т. е. севооборота, 3,8-21,2 % изменений были связаны с защитой растений от вредителей и болезней, обработка почвы (комбинированная в севообороте и минимальная) оказывали равноценное влияние на уровень урожайности озимой пшеницы (рис. 5).

Проведенные корреляционный и регрессионный анализы позволили выявить зависимости между урожайностью озимой пшеницы с абиотическими факторами.

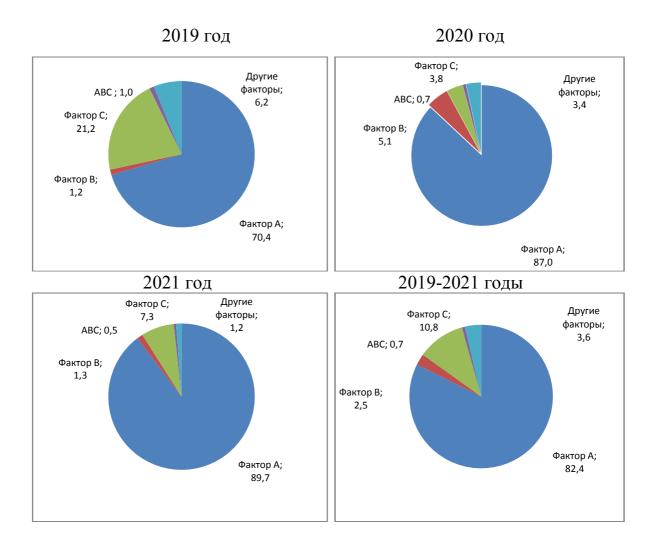


Рисунок 5 — Вклад факторов в формирование урожая озимой пшеницы в севооборотах за 2019-2021 гг., %

Анализ показал, что имеется средняя прямая связь между урожайностью и запасами продуктивной влаги в метровом слое почвы (r=0,381), суммой осадков за сентябрь-октябрь (r = 0,637), прямая сильная связь урожайности с суммой осадков за май-июнь (r=0,899) и с гидротермическим коэффициентом за май-июнь (r = 0,919), что представлено в таблице 18.

Величина урожайности озимой пшеницы имела среднюю обратную связь с биотическими факторами, нами установлена обратная средняя связь с численностью сорных растений в фазу колошения (r = -0.481), распространенностью корневых гнилей в посевах (r = -0.409) и распространенностью листовой ржавчины (r = -0.360).

Таблица 18 – Связь урожайности озимой пшеницы (у, т/га) с абиотическими и биотическими факторами

Показатели	r	Степень зависи-	Уравнение регрессии
		мости	
A	биотическ	ие факторы	
Запасы продуктивной влаги в	0,381	средняя, прямая	$y = 0.03x_9 + 0.64$
почве (0-100 см), мм			
Сумма осадков за сентябрь-	0,637	средняя, прямая	$y = 0.03x_{10} + 1.57$
октябрь, мм			
Сумма осадков за май-июнь,	0,899	сильная, прямая	$y = 0.04x_{11} + 0.53$
MM			
ГТК за май-июнь, ед	0,919	сильная, прямая	$y = 3.81x_{12} + 1.00$
I	Биотическі	ие факторы	
Численность сорных растений	-0,481	средняя, обратная	$y = -0.01x_{13} + 3.31$
в фазу колошения, шт/м^2			
Распространенность корневых	- 0,409	средняя, обратная	$y = -0.14x_{14} + 4.97$
гнилей, %			
Распространенность листовой	- 0,360	средняя, обратная	$y = -0.02x_{15} + 5.07$
ржавчины, %			

Обеспечение населения страны высококачественными продуктами — важнейшая задача производителей и переработчиков зерна. Качество зерна как сырья для переработки зависит от многих факторов, важнейшим из которых является сорт.

Тем не менее, любой сорт в процессе репродукцирования постепенно снижает хозяйственно-биологические признаки, и причиной этому являются механическое и биологическое засорение, болезни и вредители на семеноводческих посевах, снижение почвенного плодородия, ухудшение фитосанитарной обстановки экономические и организационные факторы снижают ценные качества высеваемых сортов. Поэтому высококачественные семена наряду с агротехническими мероприятиями, такими как

обработка почвы, применение удобрений, уход за посевами, имеют решающее значение для получения стабильных и устойчивых урожаев [46].

По данным Л. З. Умаевой (2017), комплекс технологических и биохимических качеств зерна по своей природе очень сложен и подвержен влиянию метеорологических условий в период формирования зерна. Н. А. Галушко (2019) в своих исследованиях утверждает, что качественное и количественное содержание белков в клейковине пшеницы, определяющее силу муки, во многом зависит от наследственных особенностей сорта. Кроме того, влияние того или иного предшественника на качество зерна также является неодинаковым для различных сортов озимой пшеницы [46, 194].

Качество зерна — это общая сумма биологических, физикохимических, технологических, потребительских свойств и признаков зерна, обуславливающих его пригодность удовлетворять потребности населения.

Натура является одним из основных физических его свойств. Чем выше натура зерна, тем больше в нем содержится полезных веществ, тем оно качественнее, что важно для хлебопекарных качеств. Для лесостепи Поволжья базисное значение для сильных и ценных пшениц 710-750 г/л.

В ходе исследований установлено, что предшественники, основная обработка почвы, защита растений оказали влияние на выполненность — натуру зерна озимой мягкой пшеницы сорта Саратовская 17. Объемная масса зерна пшеницы в опытах в зависимости от предшественников варьировала в значениях от 757 г/л до 771 г/л (табл. 19).

За годы исследований наибольшая натура зерна 785 г/л была отмечена по чистому пару, по отвальной обработке на интенсивном уровне защиты. На аналогичном варианте натура зерна по непаровым предшественникам составила 761-767 г/л.

Таблица 19 — Натура зерна озимой пшеницы в севооборотах в зависимости от агроприемов за 2019-2021 год.

Пред-	Обра-	Защита	I	Іатура, г/	Л	В	В сре	днем по	фак-
шест-	ботка	расте-				сред-		тору	
венник	ПОЧВЫ	ний				нем за	A	В	С
Фактор	Фактор В	Фактор С	2019	2020	2021	3 года			
Α	Б		2017						
Пар	B_1	C_1	774	791	776	780			
чистый		C_2	785	788	782	785	771		
A_1	B_2	C_1	770	751	750	757			
		C_2	773	772	738	761			
Лен	B_1	C_1	760	769	772	767		768	760
мас-		C_2	766	750	786	767	761		
личный	B_2	C_1	758	755	748	754			
A_2		C_2	763	774	736	758			
Горчи-	B_1	C_1	762	775	770	769			
ца бе-		C_2	768	734	780	761	757		
лая	B_2	C_1	753	731	756	747			
A_3		C_2	759	752	740	750			
Рапс	B_1	C_1	750	736	771	752		755	763
яровой		C_2	767	747	782	765	757		
A_4	B_2	C_1	746	767	757	757			
		C_2	756	760	743	753			
	HCP ₀₅		4,53	4,35	4,50				
	HCP ₀₅ A		2,26	2,17	2,25				
F	ICP ₀₅ В и (C	1,89	1,83	1,88				

 Φ актор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Наименьшая натура зерна отмечалась после всех предшественников по минимальной в севообороте обработке почвы и на минимальной системе защиты растений 747-757 г/л.

Отвальная в севообороте основная обработка почвы и уровень интенсивных агротехнологий способствовали увеличению объемной массы зерна на 3,0-13,0 г/л по сравнению с минимальной обработкой и минимальной защиты растений.

Важный сельскохозяйственный показатель качества озимой пшеницы – масса 1000 зерен. По этому показателю чистый пар является наиболее оптимальным предшественником культуры.

Таблица 20 — Macca 1000 зерен и натура озимой пшеницы в зависимости от предшественников и агроприемов

Пред-	Обра-	Защи-	Macc	а 1000 зеј	оен, г	В	В сре	днем по	о фак-
шест-	ботка	та рас-				сред-		тору	
венник	почвы	тений				нем за	A	В	С
Фак-	Фак-	Фак-	2019	2020	2021	3 года			
тор А	тор В	тор С	2017	2020	2021				
П	D	0	27.2	40.4	27.5	41.4			
Пар	B_1	C_1	37,2	49,4	37,5	41,4	40.5		
чис-		C_2	38,9	49,9	38,0	42,3	40,7		
тый	B_2	C_1	37,0	41,5	37,0	38,5			
A_1		C_2	37,5	48,2	36,5	40,7		41,0	
Лен	B_1	C_1	36,1	47,6	38,1	40,6			39,9
маслич		C_2	37,3	48,4	38,3	41,3	40,7		
ный	B_2	C_1	35,0	49,3	36,9	40,4			
		C_2	35,9	49,6	35,8	40,4			
A_2									
Гор-	B_1	C_1	36,3	49,8	37,8	41,3			
чица		C_2	37,6	49,0	38,5	41,7	40,4		
белая	B_2	C_1	35,2	45,2	37,2	39,2			
A_3		C_2	36,4	45,5	36,1	39,3			
Рапс	B_1	C_1	36,7	43,4	37,4	39,2		39,4	40,5
яровой		C_2	37,0	45,0	38,4	40,1	38,9		
A_4	B_2	C_1	35,1	42,6	37,0	38,2			
		C_2	36,2	42,6	35,9	38,2			
	HCP ₀₅	•	0,81	0,75	0,69				
	HCP ₀₅ A		0,41	0,37	0,34	1			
Н	ICP ₀₅ В и	С	0,29	0,26	0,24				

 Φ актор B: B_1- дискование на 10-12 см + рыхление на 25-27 см; B_2- дискование на 10-12 см + культивация на 12-14 см

Фактор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Масса 1000 зерен после чистого пара составила 40,7 г. в то же время следует отметить, что лен масличный, горчица белая и рапс яровой являются благоприятными предшественниками, улучшающими структуру

урожая. Масса 1000 зерен, полученная при возделывании озимой пшеницы, после них составляло довольно приемлемую величину 38,9-40,7 г.

Наибольшая масса 1000 зерен была получена на варианте после чистого пара по комбинированной обработке с применением интенсивного уровня защиты растений — 42,3 г., а минимальная масса 1000 зерен (38,2 г) — на варианте после рапса ярового по минимальной обработке с применением минимальной защиты растений (табл. 20).

За годы проведенных исследований в среднем по опыту комбинированная в севообороте система основной обработки почвы и уровень интенсивных агротехнологий способствовали повышению массы 1000 зерен в сравнении с уровнем нормальных агротехнологий по минимальной обработке почвы.

При современном насыщении севооборотов зерновыми культурами задачу повышения качества зерна пшеницы практически невозможно решить только размещением ее по чистому пару. Выполнение всех агротехнических приемов позволяет получать качественное зерно и после возделывания масличных культур.

Проанализировав физические показатели качества урожая озимой пшеницы, можно сделать вывод, что наилучшие условия для роста и развития растений, а в конечном итоге повышения качества урожая складывались при возделывании озимой пшеницы после горчицы, рапса и чистого пара на уровне интенсивных агротехнологий при отвальной в севообороте системе обработки почвы, что подтверждается агротехнической оценкой предшественников и приемов возделывания.

За годы исследований средний показатель массовой доли клейковины в зерне озимой пшеницы изменялся в зависимости от изучаемых предшественников от 25,8 % после рапса ярового до 28,3 % после чистого пара (табл. 21).

Таблица 21 — Содержание клейковины в зерне озимой мягкой пшеницы в севооборотах в зависимости от агротехнологий за 2019-2021 год.

Пред-	Обра- ботка	Защита расте-	Количе	ство клей	ковины,	В сред-		реднем	
шест-	почвы	ний		%.		нем за 3 года	A	рактор ₎ В	y C
Фактор	Фактор В	Фактор С	2019	2020	2021	3 годи	A	Б	
Пар	B_1	C_1	30,0	26,0	27,0	27,7			
чистый		C_2	31,0	28,0	28,0	28,9	28,3		
A_1	B_2	C_1	29,0	25,0	30,0	27,9			
		C_2	30,0	25,0	31,0	28,5			
Лен	B_1	C_1	27,0	22,0	27,0	25,3		26,9	26,6
мас-		C_2	28,0	24,0	32,0	27,8	26,1		
личный	B_2	C_1	26,0	21,0	30,0	25,8			
A_2		C_2	27,0	21,0	29,0	25,5			
Горчи-	B_1	C_1	27,0	28,0	26,0	27,1			
ца бе-		C_2	28,0	29,0	28,0	28,2	27,8		
лая	B_2	C_1	26,0	28,0	28,0	27,5			
A_3		C_2	27,0	28,0	31,0	28,5			
Рапс	B_1	C_1	26,0	21,0	26,0	24,6		27,1	27,4
яровой		C_2	28,0	22,0	29,0	25,9	25,8		
A_4	B_2	C_1	26,0	22,0	29,0	26,5			
		C_2	26,0	24,0	31,0	26,2			
	HCP05		0,78	0,72	0,69				
	НСРА		0,39	0,37	0,35				
	НСР В и С		0,27	0,26	0,25				

Фактор В: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см

Фактор $C: C_1$ – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Увеличение содержания клейковинных белков в зерне пшеницы отмечалось по комбинированной обработке с 26,9 % до 27,1 %. Адаптивноинтегрированная система защиты растений и комбинированная обработка почвы имели преимущество перед первым вариантом защиты растений и минимальной обработкой почвы всего в один процент (абсолютная величина).

Показатели качества зерна озимой пшеницы, возделываемых по непаровым предшественникам, как правило, уступают варианту с чистым па-

ром. Исходя из этого, размещение посевов пшеницы необходимо после предшественников, обеспечивающих в почве необходимый водный, воздушный и пищевой режимы, является важным агротехническим средством повышения качества зерна.

Таблица 22 — Качество клейковины (ИДК) зерна озимой пшеницы при возделывании в севооборотах за 2019-2021 год.

Пред-	Обра-	Защита		Ед. ИДК		В	В сре	днем по	фак-
шест-	ботка	расте-				сред-		тору	
венник	ПОЧВЫ	ний				нем за	A	В	С
Фактор	Фактор В	Фактор С	2010	2020	2021	3 года			
Α	Б		2019	2020	2021				
Пар	B_1	C_1	75,0	73,0	84,0	77,0			
чистый		C_2	76,0	74,0	83,0	78,0	77,3		
A_1	B_2	C_1	78,0	76,0	81,0	78,0			
		C_2	77,0	77,0	73,0	76,0			
Лен	B_1	C_1	82,0	80,0	93,0	85,0		78,9	81,1
мас-		C_2	80,0	79,0	71,0	77,0	82,4		
личный	B_2	C_1	89,0	83,0	76,0	83,0			
A_2		C_2	87,0	84,0	84,0	85,0			
Горчи-	B_1	C_1	80,0	79,0	72,0	77,0	80,2		
ца бе-		C_2	81,0	78,0	80,0	80,0			
лая	B_2	C_1	88,0	77,0	84,0	83,0			
A_3		C_2	84,0	80,0	80,0	81,0			
Рапс	B_1	C_1	82,0	85,0	76,0	81,0		80,8	78,5
яровой		C_2	79,0	82,0	68,0	76,0	79,4		
A_4	B_2	C_1	84,0	81,0	88,0	84,0			
		C_2	83,0	80,0	65,0	76,0			
	HCP ₀₅		1,03	1,59	1,54				
	HCP ₀₅ A	_	0,52	0,79	0,77				
H	ICP ₀₅ В и (C	0,37	0,56	0,55				

 Φ актор B: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 — гербицид; C_2 — протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Качество клейковины (ИДК ед.) по вариантам опыта соответствовало второй и третьей группам (74-86 ед.) после чистого пара как по комбинированной, так и по минимальной обработке ИДК составил 74-77 ед. — вторая группа. В среднем по этому предшественнику 77,3 ед. После других

предшественников — 80,2 ед. после горчицы, 82,4 ед. после льна масличного и 79,4 ед. после рапса ярового (таблица 22).

Анализ наших данных показывает, что за годы исследований белковость зерна озимой пшеницы изменялась в зависимости от изучаемых факторов от 12,9 % (после рапса ярового по минимальной обработке на минимальной защите растений) до 14,7 % (по чистому пару по комбинированной обработке на уровне интенсивных агротехнологий) со средним значением по опыту 14,2 % (таблица 23).

Таблица 23 — Содержание белка в зерне озимой мягкой пшеницы в севооборотах в зависимости от агроприемов за 2019-2021 год.

Пред-	Обра-	Защита	Macco	овая доля	белка	В	В среднем по факто		
шест-	ботка	расте-				сред-		py	
венник	ПОЧВЫ	ний				нем за	A	В	С
Фактор	Фактор В	Фактор С	2019	2020	2021	3 года			
A	Б	C							
Пар	B_1	C_1	13,9	14,6	14,3	14,3			
чистый		C_2	14,1	15,2	14,9	14,7	14,2		
\mathbf{A}_1	B_2	C_1	13,5	14,3	13,7	13,8			
		C_2	13,8	14,2	14,2	14,1			
Лен	B_1	C_1	13,0	13,8	13,6	13,5		14,0	13,6
маслич		C_2	13,8	14,0	13,8	13,9	13,4		
ный	B_2	C_1	12,9	12,7	13,0	12,9			
		C_2	13,1	12,9	13,3	13,1			
A_2									
Горчи-	B_1	C_1	12,8	15,4	14,4	14,2			
ца бе-		C_2	13,9	15,7	14,8	14,8	14,3		
лая	B_2	C_1	12,6	14,9	14,2	13,9			
A_3		C_2	13,2	15,5	14,5	14,4			
Рапс	B_1	C_1	13,2	12,9	12,9	13,0		13,6	14,0
яровой		C_2	13,7	13,1	13,3	13,4	13,2		
A_4	B_2	C_1	13,0	13,1	12,7	12,9			
		C_2	13,1	14,0	13,1	13,4			
HCP ₀₅			1,73	2,09	1,95				
	HCP ₀₅ A			1,05	0,97				
F	ICP ₀₅ B и	C	0,61	0,74	0,69		- 27		

 Φ актор B: B_1- дискование на 10-12 см + рыхление на 25-27 см; B_2- дискование на 10-12 см + культивация на 12-14 см

Фактор $C: C_1$ – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Анализируя эффективность предшественников озимой пшеницы на содержание белка в зерне, можно выстроить их в ряд убывающей последовательности: 14,3 % после горчицы белой, 14,2 % после чистого пара, 13,4 % после льна масличного и 13,2 % после рапса ярового.

Оценивая приемы основной обработки почвы, следует сказать, что наиболее высокое содержание белка — $14,0\,\%$ было в зерне пшеницы при комбинированной обработке. На уровне нормальных агротехнологий содержание белка составило $13,6\,\%$, на интенсивном — $14,0\,\%$.

Таблица 24 — Стекловидность зерна озимой пшеницы в севооборотах в зависимости от агроприемов за 2019-2021 год.

Пред-	Обра-	Защита	Стекл	повиднос	ть, %.	В	Вс	В среднем п		
шест-	ботка	расте-	2019	2020	2021	сред-		рактору		
венник	ПОЧВЫ	ний				нем за	A	В	С	
Фактор	Фактор В	Фактор С				3 года				
A	Б									
Пар	B_1	C_1	49	68	67	61,3	60,2	59,3	57,4	
чистый		C_2	50	68	67	61,5				
\mathbf{A}_1	B_2	C_1	48	62	64	58,1				
		C_2	49	65	65	59,8				
Лен	B_1	C_1	46	65	63	57,8	56,7			
маслич-		C_2	47	65	65	58,9				
ный	B_2	C_1	45	59	59	54,4				
A_2		C_2	46	60	61	55,7				
Горчица	B_1	C_1	46	65	63	57,9	57,4	56,4	58,3	
белая		C_2	48	66	65	59,6				
A_3	B_2	C_1	43	63	61	55,7				
		C_2	44	64	62	56,5				
Рапс	B_1	C_1	46	66	65	58,9				
яровой		C_2	47	65	63	58,3	57,1			
A_4	B_2	C_1	43	62	60	55,1				
		C_2	44	63	61	56,1				
	HCP ₀₅			8,4	8,5					
	HCP ₀₅ A			4,2	4,2					
I	HCР₀₅ В и С			3,0	3,0					

 Φ актор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Фактор $C: C_1$ – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Консистенция зерна пшеницы, как правило, стекловидная, которая может варьировать в пределах от 10 до 90-95 %. Это зависит от сорта, географических и почвенных факторов, агротехники выращивания урожая.

В среднем за годы исследований стекловидность зерна озимой пшеницы после льна масличного, горчицы белой и рапса ярового составляла 56,7-57,4 %, а по чистому пару 60,2 %. Из приемов агротехники на комбинированной обработке почвы образовалось зерно со стекловидностью 59,3 %, а по минимальной — 56,4 %. На уровне интенсивных агротехнологий стекловидность была на 1,5 % выше, чем на уровне нормальных агротехнологий (табл. 24).

Таким образом, лучшие качественные показатели зерна озимой пшеницы были получены при размещении озимой пшеницы после чистого пара на комбинированной обработке почвы с применением адаптивночитегрированной защиты растений, причем это проявлялось во все годы исследований.

В современной ситуации при насыщении севооборотов зерновыми культурами проблему повышения качества зерна пшеницы практически невозможно решить только размещением ее по чистому пару. Четкое выполнение всех агротехнических приемов позволяет получать высококачественное зерно при возделывании, даже при размещении после непаровых предшественников (лен масличный, горчица белая, рапс яровой).

4.4. Сравнительная продуктивность звеньев севооборотов

Принцип уплотненного использования пашни, определяющий разработку севооборотов с максимальным биоразнообразием и исключением чистых паров в севооборотах, является важной методологической основой современных систем земледелия. При этом следует ориентировать агротехнологии на решение вопросов накопления и сохранения влаги в почве, воспроизводства плодородия почвы и защиты растений от вредителей, бо-

лезней и вредителей за счет альтернативных подходов, направленных на снижение объемов применения ксенобиотиков.

В современных условиях ведения сельского хозяйства очень важно дать правильную оценку не только отдельным предшественникам, но и показать продуктивность изучаемых звеньев севооборотов. Важнейшими показателями продуктивности культур и звена севооборота является выход зерна, условных зерновых единиц в расчете на 1 га.

Сравнительное изучение звеньев севооборотов в зависимости от размещения озимой пшеницы по парам (и непаровым предшественникам, по разным технологиям возделывания) показало более высокую продуктивность звеньев с изучаемыми предшественниками.

Таблица 25 — Продуктивность звеньев севооборотов с озимой пшеницей в зависимости от обработки почвы и защиты растений за 2019-2021 гг.

Звенья	Обработ-	Защита	Урожай-	Урожай-	Выход зерновых единиц		
севообо-	ка почвы	растений	ность	ность	Т	a	
ротов			маслич-	озимой	По	По	По
			ных	пшени-	факто-	факто-	факто-
			культур,	цы, т/га	py C	py B	py A
			т/га				
Пар чис-	${f B}_1$	C_1		5,05	2,53		
тый –		C_2	_	5,42	2,71	2,62	
озимая	B_2	C_1	_	4,88	2,44		
пшеница		C_2	_	5,28	2,64	2,54	2,58
Лён мас-	B_1	C_1	1,24	3,69	2,87		
личный –		C_2	1,33	4,04	3,12	2,99	
озимая	B_2	C_1	1,08	3,48	2,63		
пшеница		C_2	1,17	3,85	2,89	2,76	2,88
Горчица	B_1	C_1	1,26	3,97	2,97		
белая –		C_2	1,36	4,34	3,23	3,35	
озимая	B_2	C_1	1,05	3,72	2,68		
пшеница		C_2	1,09	4,11	2,91	2,79	2,95
Рапс яро-	B_1	C_1	1,39	3,78	2,84		
вой –		C_2	1,52	4,15	3,11	2,97	
озимая	B_2	C_1	1,14	3,60	2,58		
пшеница		C_2	1,23	3,94	2,81	2,69	2,83

 Φ актор B: B_1- дискование на 10-12 см + рыхление на 25-27 см; B_2- дискование на 10-12 см + культивация на 12-14 см

Фактор $C: C_1$ – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

По выходу условных зерновых единиц исследуемые звенья севооборотов можно расположить в следующий ряд: горчица белая — озимая пшеница (2,95 тыс./га) > лен масличный — озимая пшеница (2,88 тыс./га) > рапс яровой— озимая пшеница (2,83 тыс./га) > чистый пар — озимая пшеница (2,58 тыс./га).

Оценка изучаемых приемов показала преимущество комбинированной обработки почвы. Так, в звене с чистым паром выход условных зерновых единиц повышался на 0,08 тыс. с 1 га, а в зерновых звеньях на 0,23-0,56 тыс./га. Адаптивно-интегрированная защита растений также повышала продуктивность звеньев на 0,16-0,27 тыс. зерновых единиц на 1 га или на 6,6-9,9% с преимуществом звеньев севооборотов с непаровыми предшественниками и комбинированной обработкой почвы.

Оценка продуктивности звеньев севооборотов с озимой пшеницей подтверждает гипотезу о тенденции снижения роли чистого пара в севооборотах в условиях интенсификации. Перспективным направлением является использование масличных культур — льна, горчицы и рапса в качестве предшественников для озимой пшеницы, наряду с традиционными парозанимающими культурами — горох, вико-овес, что позволяет выстраивать севообороты на принципах плодосмена и поддерживать биоразнообразие в агроэкосистемах, особенно на эрозионно-опасных землях. Кроме того, предполагаем, что в звеньях с масличными культурами и озимой пшеницей снижается напряженность режима органического вещества почвы и излишняя минерализация гуминовых веществ.

Глава 5. Экономическая, агро- и биоэнергетическая эффективность возделывания полевых культур в звеньях севооборотов

5.1. Экономическая эффективность возделывания полевых культур

Цель производства сельскохозяйственных культур в условиях рыночной экономики — получение прибыли от реализации продукции. Основной экономической оценкой выращивания любой сельскохозяйственной культуры служит документация всех затрат или технологическая карта, в которой показаны все издержки технологической цепи производства продукции [52].

В сложившихся экономических условиях требуется пересмотр способов ведения земледелия и технологий возделывания сельскохозяйственных культур с тем, чтобы при дефиците средств и ресурсов сохранить необходимые объемы производства продукции и снизить темпы падения почвенного плодородия [22, 53, 223].

В первую очередь необходимо подходить к внедрению новых технологических приемов в зависимости от почвенно-климатических условий зоны. При этом необходимо учитывать не только агротехническую целесообразность, но и экономическую эффективность того или иного агроприёма [11, 162].

При совершенствовании схем севооборотов особое внимание следует уделить их соответствию современным экономическим и агрономическим требованиям, учитывая, в какой мере они удовлетворяют двум главным требованиям — сохранению плодородия почв и обеспечению высокой урожайности с меньшими затратами труда, средств и энергии.

Степень эффективности возделывания озимой пшеницы по предшественникам чистый пар, лен, горчица, рапс, а также самих масличных культуры по различной системе обработки почвы и использование средств защиты растений требует экономического обоснования. Для возможности

полноценного введения результатов научных полевых исследований, применения в севообороте исследуемых предшественников, обработки почвы и использования химических препаратов необходимо обосновать их экономическую эффективность.

Экономическая эффективность предшественников и использование химических препаратов рассчитывалась по размеру дохода, то есть разницы в денежном выражении между стоимостью выручки и прямыми затратами на возделывание и уборку культур в расчете на один гектар пашни. К затратам относили расходы на семена и удобрения, химические средства защиты, оплату труда, горюче-смазочные материалы, амортизацию техники и прочие затраты.

В приложении 32 приведен расчет экономической эффективности возделывания масличных культур при различных способах основной обработки почвы и разных уровней защиты растений показал, что уровень рентабельности был значительно выше по комбинированной обработке почвы на всех уровнях защиты растений.

Обоснование экономической эффективности агротехнологий масличных культур при различных приемах основной обработки почвы и уровней защиты растений показал, что преимущество имели посевы льна масличного. Возделывание льна обеспечило получение условно чистого дохода на уровне от 36382 руб./га (минимальная обработка почвы, с применением минимальной защиты растений), до 43794 руб./га (комбинированная обработка почвы, на уровне нормальных агротехнологий). Возделывание горчицы белой и рапса ярового является также экономически эффективным, при этом условно чистый доход изменялся от 25911 руб./га (горчица белая, минимальная обработка почвы, защиты растений уровня интенсивных технологий) до 42061 руб./га (горчица белая, комбинированная обработка почвы, защита растений уровня нормальных агротехнологий)

Оценка экономической эффективности показала, что наиболее целесообразно возделывать масличные культуры лён масличный, горчица белая, рапс яровой по комбинированной основной обработке почвы на минимальном защите растений. Это обусловлено тем, что по адаптивноинтегрированной системе защиты растений проводилось большее количество обработок. Несмотря на прибавку урожая за счет интенсивного применения средств защиты растений, это не смогло окупить затраты.

В приложении 33 приведен расчет экономической эффективности возделывания озимой пшеницы в зависимости от предшественников, способов основной обработки почвы и систем защиты растений.

Наибольший условно чистый доход был получен после чистого пара и данный показатель составил 49372-55805 руб./га, тогда как по занятым парам от 28710 до 40201 руб./га. По всем предшественникам более экономически эффективным по условному чистому доходу оказался уровень защиты, соответствующий интенсивным агротехнологиям в сравнении с уровнем нормальных агротехнологий.

Наименьшая себестоимость зерна озимой пшеницы была получена после чистого пара – 5694 руб./т., самая высокая – по льну масличному по минимальной обработке почвы – 7750 руб./т.

Уровень рентабельности после чистого пара по комбинированной обработке почвы с применением уровня интенсивных агротехнологий составил 181 % и на минимальной обработке — 174 %. Среди непаровых предшественников наибольший уровень рентабельности 125-137 % был получен по горчице белой, по рапсу яровому — 116-127 % и по льну масличному 111-122 %.

Звено с чистым паром по условному чистому доходу уступало звеньям с занятыми парами (табл. 26).

Экономически эффективными оказались звенья севооборотов с масличными культурами при возделывании по комбинированной обработке почвы.

Таблица 26 – Экономическая эффективность звеньев севооборотов с озимой пшеницей за 2018-2021 гг.

севооборотов ботка почвы растений дуктив ность ность проза ес 1 дукции га. ты на руб/га ный ч.д/руб Пар чистый — озимая В1 С1 2,53 40400 14377 26023 Тый — озимая В2 С1 2,44 39040 14354 24686	Руб/13. e.	вень рент, %
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	e.	-
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
тый – C ₂ 2,71 43360 15408 27903		
тый – C ₂ 2,71 43360 15408 27903		
	5683	181
03имая В С. 2.44 39040 1/354 2/686	5686	181
OSIMMA D ₂ C ₁ 2,44 37040 14334 24000	5883	172
пшеница С ₂ 2,64 42240 15439 26801	5848	174
Лён мас- B ₁ C ₁ 2,87 60520 22605 37915	7876	168
личный – С2 3,12 65570 27798 37772	8909	136
озимая B ₂ C ₁ 2,63 54840 22294 32546	8477	145
пшеница С ₂ 2,89 60050 28154 31897	9742	113
Горчица B ₁ C ₁ 2,97 63260 24009 39252	8084	163
белая – С2 3,23 68720 29220 39500	9046	135
озимая B ₂ C ₁ 2,68 56010 23687 32323	8838	136
пшеница С ₂ 2,91 60130 28895 31235	9930	108
Рапс B ₁ C ₁ 2,84 58040 21964 36076	7734	164
яровой – С2 3,11 63600 25715 37885	8268	150
озимая B ₂ C ₁ 2,58 51600 22021 29580	8535	140
пшеница С2 2,81 56120 27071 29050	9634	107

 Φ актор В: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см

Фактор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Наибольший условно чистый доход был получен в звене горчица белая — озимая пшеница - 39500 руб., чуть меньше в звене лен масличный— озимая пшеница - 37915 руб. и 37885 руб. в звене рапс яровой — озимая пшеница.

5.2. Агро- и биоэнергетическая эффективность возделывания полевых культур

Сельское хозяйство — уникальная производственная отрасль, где зеленые растения преобразуют солнечную энергию в органическое вещество, которое используется в пищу человеку и животных. Для более конкретного анализа производства продукции сельского хозяйства необходимо проводить оценку технологических приемов по критериям, основой ко-

торых является накопленная урожаем энергия. Чем выше она, тем эффектов ее предлагаемая технология. Поэтому рост затрат энергии в агротехнологиях озимой пшеницы требует энергетической оценки их эффективности, как наиболее полно отвечает взаимосвязи производимой продукции с использованием энергии солнца [4, 72, 97, 99, 141].

При расчете энергетической эффективности, кроме энергии накопленной урожаем, мы определяли совокупную энергию, затраченную на производство зерна озимой пшеницы, которые складываются из энергию затрат на ГСМ, семена, удобрения, пестициды, амортизационные отчисления на тракторы и сельскохозяйственные машины, оборудование, автотранспорт, капитальный и текущий ремонт, электроэнергию и непосредственно сам труд.

В приложении 35 приведен расчет энергетической эффективности возделывания масличных культур льна масличного, горчицы белой и рапса ярового в зависимости от основной обработки почвы в севообороте, по различным вариантам защиты растений.

Затраты энергии на всех культурах опыта в незначительной мере увеличивались в зависимости от основной обработки почвы и применения уровня интенсивных агротехнологий. Ввиду использования большого количества химических препаратов произошло увеличение затрачиваемой энергии.

Несмотря на большую урожайность культур при использовании интенсивного уровня защиты растений, коэффициент энергетической эффективности был ниже, чем на уровне нормальных агротехнологий.

На основании этого наиболее эффективно возделывание масличных культур по комбинированной обработке почвы на минимальной системе защиты растений. Коэффициент энергетической эффективности по льну масличному составило 1,70 ед. по горчице белой этот показатель составил 1,62 ед. по рапсу яровому – 1,79 ед.

В приложении 36 приведен расчет энергетической эффективности возделывания озимой пшеницы. Установлено, что затраты энергии по всем предшественникам на интенсивном уровне защиты растений были выше, чем по минимальной защите растений.

Энергетический коэффициент по комбинированной обработке составил после чистого пара 2,94-3,03 ед., по минимальной 2,26-2,42 ед., после льна масличного 2,39-2,53 ед., 2,32-2,42 ед. по минимальной обработке почвы.

Содержание энергии в урожае озимой пшеницы была больше на варианте с применением адаптивно-интегрированной защиты растений по комбинированной обработке, наибольшее содержание энергии в урожае озимой пшеницы отмечено по предшественнику чистый пар — 94,27 ГДж/га, наименьшее 70,41 ГДж/га после рапса ярового на уровне нормальных агротехнологий.

На основании вышеизложенного следует вывод, что наиболее энергетически эффективно следует возделывать озимую пшеницы по предшественнику чистый пар по комбинированной обработке с применением интенсивных агротехнологий.

Для обеспечения устойчивости агроэкосистем человек тратит огромное количество энергии. Большая часть этой энергии тратится нерационально, а так же загрязняется окружающая среда и расходуется гумус.

В таблице 27 приведен расчет энергетической эффективности возделывания звеньев с озимой пшеницей в зависимости от обработки почвы в севообороте по различным предшественникам и вариантам защиты растений.

Затраты энергии га 1 центнер зерновых единиц в звене с чистым паром по комбинированной обработке почвы с применением адаптивночитегрированной защитой растений ниже, чем по минимальной обработке по аналогичной системе защите растений.

Коэффициент энергетической эффективности возделывание озимой пшеницы после занятых паров, был значительно выше, чем в звене чистый пар — озимая пшеница. Также стоит отметить, что в звеньях с занятыми парами наиболее энергетически эффективны варианты по комбинированной обработке почвы с применением минимальной защиты растений.

Коэффициент энергетической эффективности в звене лен масличный – озимая пшеница составил 2,15-2,26 ед. горчица белая – озимая пшеницы 2,51-2,66 ед, рапс яровой – озимая пшеница 2,20-2,34 ед. В звене чистый пар озимая пшеница коэффициент энергетической эффективности составил 2,26-3,02 ед.

Таблица 27 — Агроэнергетическая эффективность звеньев севооборотов с озимой пшеницей 2018-2021

Звенья	Обработ-	Защита	Продук-	Затраты	Содержа-	Коэффи-
севообо-	ка почвы	растений	тивность	энергии	ние энер-	циент
ротов			3.e.	ГДж/га	гии в	энергети-
					урожае	ческой
					ГДж/га	эффек-
						тивности
Пар чис-	B_1	C_1	2,53	14,15	41,54	2,93
тый –		C_2	2,71	13,27	40,15	3,02
озимая	B_2	C_1	2,44	12,54	30,36	2,42
пшеница		C_2	2,60	12,68	28,63	2,26
Лён мас-	B_1	C_1	2,87	18,93	42,86	2,26
личный —		C_2	3,12	19,37	41,54	2,15
озимая	B_2	C_1	2,63	18,81	39,98	2,13
пшеница		C_2	2,89	19,01	39,24	2,06
Горчица	B_1	C_1	2,97	20,66	54,95	2,66
белая –		C_2	3,23	21,78	54,62	2,51
озимая	B_2	C_1	2,68	19,89	41,87	2,11
пшеница		C_2	2,91	20,34	40,64	2,00
Рапс яро-	B_1	C_1	2,84	20,17	47,14	2,34
вой —		C_2	3,11	21,06	46,32	2,20
озимая	B_2	C_1	2,58	19,69	43,52	2,21
пшеница		C_2	2,81	20,99	42,53	2,03

Фактор В: B_I — дискование на 10—12 см + рыхление на 25—27 см; B_2 — дискование БДМ—4x4 П на 10—12 см + культивация на 12—14 см

 Φ актор C: C_1 — гербицид; C_2 — протравливание семян, гербицид + биофунгицид, инсектициды, фунгициды.

Расчеты показали увеличение затрат энергии на уровне интенсивных агротехнологий не привело к увеличению коэффициента экономической эффективности. Во всех звеньях севооборота произошло увеличение коэффициента энергетической эффективности на уровне нормальных агротехнологий. Затраченные на борьбу с вредными организмами химических средств защиты растений привели к увеличению затрат энергии и уменьшению содержания энергии в урожае.

Размещение озимых зерновых культур по чистым парам сопряжено с интенсивной минерализацией органического вещества. Возделывание озимой пшеницы в звеньях с масличными культурами показало, что по минимальной обработке почвы сопровождалось уменьшением затрат энергии на произведенную продукцию по всем предшественникам.

Расчеты показали, что применение минимальной обработки почвы совместно с применением минимальной системой защиты растений, на всех непаровых звеньях севооборотов, является наиболее энергетически эффективным.

На основании расчета баланса гумуса, представленного в главе 3, проведена энергетическая оценка паровых звеньев севооборотов с учетом энергии, накопленной в биогенных ресурсах. Установлено, что наибольшее количество биогенных ресурсов, а, следовательно и энергии поступает в почву в звене с масличными культурами.

Анализируя содержание энергии в минерализованном гумусе, можно отметить, что наибольшее ее количество затрачено в звене с чистым паром. Если учитывать энергию гумуса, затраченного на формирование урожайности культур, то возделывание озимой пшеницы по чистому пару энергетически неэффективно. Энергоотдача по этому варианту находится в пределах 1,08-1,16 ед.

Энергетически эффективна, с учетом получения высоких урожаев и затрачивании наименьшем количестве энергии комбинированная обработка почвы.

По комбинированной обработке почвы с применением адаптивноинтегрированной системой защиты растений наблюдалось увеличение затрат энергии, однако коэффициент энергетической эффективности был выше, чем на аналогичной обработке с применением минимальной защиты растений.

Энергетическая эффективность в вариантах с занятыми парами в несколько раза выше по сравнению с другими. Использование чистого пара хотя и создает условия для получения высоких урожаев, но сопровождается снижением энергопотенциала почвы за счет большей минерализации гумуса.

Таблица 28 — Биоэнергетическая эффективности звеньев севооборотов с озимой пшеницей с учетом затрат энергии гумуса за 2018-2021 год.

Звенья	Обработ-	Защита	Продук-	Затраты	Содержа-	Коэффи-
севообо-	ка почвы	растений	тивность	энергии с	ние энер-	циент
ротов			3.e.	учетом	гии в	энергети-
				компен-	урожае	ческой
				сации гу-	ГДж/га	эффек-
				муса		тивности
				ГДж/га		
Пар чис-	B_1	C_1	2,53	42,86	46,23	1,08
тый –		C_2	2,71	42,38	49,19	1,16
озимая	B_2	C_1	2,44	41,07	44,83	1,09
пшеница		C_2	2,60	41,65	47,96	1,15
Лён мас-	D	C_1	2,87	24,85	45,41	1,83
личный —	\mathbf{B}_1	C_2	3,12	25,78	49,03	1,90
озимая	B_2	C_1	2,63	24,27	43,76	1,80
пшеница		C_2	2,89	25,00	44,75	1,79
Горчица	B_1	C_1	2,97	30,71	47,80	1,56
белая —		C_2	3,23	32,68	51,75	1,58
озимая	B_2	C_1	2,68	28,76	43,85	1,52
пшеница		C_2	2,91	29,79	47,05	1,58
Рапс яро-	B_1	C_1	2,84	30,36	47,30	1,56
вой —		C_2	3,11	31,34	51,50	1,64
озимая	D	C_1	2,58	28,01	43,93	1,57
пшеница	B_2	C_2	2,81	29,98	45,74	1,53

 Φ актор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Таким образом, с энергетической точки зрения наиболее эффективным является возделывание озимой пшеницы в звеньях с масличными культурами, что позволяет получать урожаи при меньшем снижении почвенного плодородия, Однако использование чистых паров способствует получению более высокой урожайности озимых культур, даже во время неблагоприятных условий, но сопровождается значительной минерализацией органического вещества и ослаблением энергетического потенциала почвы.

Заключение

- 1. Плотность сложения пахотного слоя чернозема выщелоченного не изменялась по предшественникам. Незначительное уплотняющее воздействие на сложение пахотного слоя оказывала минимальная обработка почвы, однако, плотность сложения не выходила за границы равновесной плотности, что в свою очередь говорит об отсутствии необходимости интенсивной обработки почвы и возможности минимализации основной обработки почвы под озимую пшеницу по чистого пара и непаровых предшественников.
- 2. Предшественники и обработка почвы определяли влагообеспеченность озимой пшеницы. В период посева запасы продуктивной влаги после чисто пара в слое 0 20 см составили 37-28 мм, после горчицы белой 25-26 мм, и после льна масличного и рапса ярового 22-23 мм, что оценивается как удовлетворительные запасы и позволяют получить всходы. В метровом слое почвы после чистого пара сохранилось 143-146 мм, а после непаровых предшественников 102-109 мм с преимуществом комбинированной обработки почвы в севооборотах.
- 3. Результаты наших исследований свидетельствуют о том, что замена чистых паров на занятые пары или использование непаровых предшественников является наиболее доступным способом пополнения ресурсов органического вещества черноземных почв. В звеньях севооборотов с чистым паром потери гумуса (до 1263 кг/га) компенсируется за счет пожнивно-корневых остатков и соломы озимой пшеницы только на 33,9 %. В звеньях севооборотов с непаровыми предшественниками, за счет биогенных ресурсов создаваемых в агроэкосистемах, на 59,3-69,0 %, что снижает потери органического вещества почвы в 2,7-4,9 раза.
- 4. Размещение озимой пшеницы после крестоцветных культур (горчица белая, рапс яровой) снижало распространение корневых гнилей ози-

мой пшеницы на 25,6-34,1 % и листовой ржавчины на 20,6-22,6 % в сравнении с чистым паром.

Биологическая эффективность протравливателя семян Иншур Перформ — 0,5 л/га совместно с биопрепаратом БисолбиСан 1 л/га в защите растений озимой пшеницы от корневых гнилей составила на 81-82 %, применение фунгицида Рекс Плюс, КС 0,5 л/га + БисолбиСан 1 л/га снижало распространение листовой ржавчины на 60-79,5 %.

Использование чистого пара как предшественника озимой пшеницы способствует снижению количества сорняков в посевах на 8,0 – 24,1 %, а их массу на 15,2 – 45,9 % по отношению к непаровым предшественникам. Варианты отвальной обработки почвы и повышенный уровень защиты растений по уровню засоренности имели преимущество перед минимальной обработкой и минимальным уровнем защиты растений.

- 5. Полевая всхожесть озимой пшеницы во многом определялась наличием доступной влаги в слое 0-20 см почвы на момент посева, связь характеризовалось как прямая сильная (r = 0,671). Наибольшее количество растений взошло после чистого пара 448-456 шт./м², а полевая всхожесть составила 81,1-82,9 %. Полевая всхожесть растений после горчицы белой составила 76,5-78,7 %, а после льна масличного и рапса ярового соответственно 75,5-77,6 % и 76,2-77,8 %. Отмечено повышение полевой всхожести и сохранности растений при протравливании семян Иншур Перформ 0,5 л/га совместно с биопрепаратом БисолбиСан 1 л/га.
- 5. По уровню формируемого урожая озимой пшеницы изучаемые предшественники можно расположить в следующий ряд: чистый пар 4,88-5,42 т/га > горчица белая 3,72-4,34 т/га > рапс яровой 3,60-4,15 т/га > лен масличный 3,48-3,69 т/га с достоверной прибавкой по адаптивно-интегрированной защите растений (протравливание семян, гербицид, биофунгицид, инсектицид, фунгицид) в среднем на 0,37 т/га (9,2 %).
- 6. Наиболее качественное зерно озимой пшеницы получено при ее размещении после чистого пара, качество зерна после непаровых предше-

ственников также соответствовало 3 классу качества. Адаптивноинтегрированная защита растений (протравливание семян, гербицид, биофунгицид, инсектицид, фунгицид) в сочетании с комбинированной обработкой почвы в севообороте улучшали технологические и физические показатели качества зерна озимой пшеницы (натура зерна, масса 1000 зерен, содержание клейковины и белка).

- 8. По выходу условных зерновых единиц исследуемые звенья севооборотов можно расположить в следующий ряд: горчица белая озимая пшеница (2,95 тыс./га) > лен масличный озимая пшеница (2,88 тыс./га) > рапс яровой озимая пшеница (2,83 тыс./га) > чистый пар озимая пшеница (2,58 тыс./га). Комбинированная обработка почвы в звене с чистым паром повышала выход условных зерновых единиц на 0,08 тыс. с 1 га, а в зерновых звеньях севооборотов на 0,23-0,56 тыс./га. Адаптивно-интегрированная защита растений увеличивала продуктивность звеньев на 0,16-0,27 тыс. зерновых единиц на 1 га или на 6,6-9,9 % с преимуществом звеньев севооборотов с непаровыми предшественниками и комбинированной обработкой почвы.
- 9. Звенья севооборотов с масличными культурами повышали выход условно чистого дохода с 1 га. В звене лен маслинный озимая пшеница условно чистый доход возрос на 5096-11892 руб. или на 19,1-45,7 %, в звене горчица белая озимая пшеница на 4434-13229 руб. или на 16,5-50,1 % и в звене рапс яровой озимая пшеница на 2249-10053 руб. на га или на 8,4-38,6 %.

Адаптивно-интегрированная защита растений повышала выход условно-чистого дохода с 1 га озимой пшеницы на 3287-4230 руб., что составляет по отношению к уровню защиты нормальных агротехнологий 7,2-13,1 %.

10. Агроэнергетическая оценка показала, что звенья севооборотов с непаровыми предшественниками обеспечивают снижение затрат техногенной энергии на производство зерна, рост выхода энергии с единицы пло-

щади и более высокую энергетическую эффективность в сравнении с паровым звеном севооборота. В экологическом плане с учетом прогнозируемых изменений содержания гумуса биоэнергетическая оценка производства зерна подтвердила высокую эффективность паровых звеньев севооборотов с масличными культурами (лен масличный, горчица белая и рапс яровой).

Предложение производству

В условиях лесостепной зоны Среднего Поволжья наряду с чистым паром в качестве предшественника озимой пшеницы использовать горчицу белую, рапс яровой и лен масличный.

Обработку почвы под масличные культуры проводить по схеме: дискование на 10–12 см + рыхление на 25–27 см; под озимую пшеницу - двукратное дискование на глубину 8–10 см и 10–12 см и предпосевная культивация.

При возделывании озимой пшеницы осваивать адаптивноинтегрированную защиту растений с включением в схему обработок семян и растений по вегетации биологический препарат БисолбиСан 1 л/т (*Bacillus subtilis*, штамм Ч-13).

Библиографический список

- 1. Авдеенко, А.П. Эффективность применения биологических фунгицидов на озимой пшенице / А.П. Авдеенко, В.В. Черненко, В.П. Горячев, С.А. Горячева. Текст : непосредственный // Сельское, лесное и водное хозяйство. 2014. N 7 С. 12–17.
- 2. Агротехнический метод защиты растений / В.А. Чулкина, Е.Ю. Торопова, Ю.И. Чулкина, Г.Я. Стецов. Москва: Маркетинг, ЮКЭА, 2000. 336 с. ISBN 7-7856-0139-7. Текст: непосредственный.
- 3. Адаптивно-интегрированная защита растений : монография / Ю.Я. Спиридонов, М.С. Соколов, А.П. Глинушкин и др. Москва : Печатный город, 2019. 628 с. ISBN 978-5-98467-014-2. Текст : непосредственный.
- 4. Адаптивно-ландшафтная система земледелия Ульяновской области / А. В. Дозоров [и др.]. 2-е изд. Доп. и перераб. Ульяновск : Ул-ГАУ, 2017. 448 с. Текст : непосредственный.
- 5. Азизов, З.М. Устойчивость производства зерна в севооборотах степи Нижнего Поволжья / З.М. Азизов, В.В. Архипов, И.Г. Имашева. Текст: непосредственный // Аграрный научный журнал. 2020. № 7. С. 4-9.
- 6. Айдиев, А.Я. Совершенствование технологий возделывания озимой пшеницы в условия Курской области / А.Я. Айдиев, В.И. Лазарев, М.Н. Котельникова. Текст: непосредственный // Земледелие. 2017. № 1. С. 37-39.
- 7. Акимова, О.И. Влияние предшественников на формирование элементов продуктивности озимой пшеницы в 117Н117нее-осенний период / О.И. Акимова. Текст : непосредственный // Вестник Бурятской государственной сельскохозяйственной академии им. В.Р. Филиппова. 2016. N 1 (42). С. 7–13.
- 8. Алабушев, А.В. Влияние времени прекращения осенней вегетации и возобновления весенней вегетации на урожайность твердой ози-

- мой пшеницы / А.В. Алабушев, А.С. Попов. Текст: непосредственный// Аграрный вестник Урала. 2015. № 11(141). С. 6-11.
- 9. Алабушев, А.В. Влагообеспеченность почвы и водопотребление озимой пшеницы в полевом севообороте / А.В. Алабушев, Г.В. Овсянникова. Текст: непосредственный // Земледелие. 2015.- № 5.- С. 10-12.
- Алабушев, А.В. Основная обработка почвы и продуктивность озимой пшеницы / А.В. Алабушев [и др.] . Текст : непосредственный // Земледелие. 2009. № 4. С. 23-24.
- 11. Алабушев, А.В. Стабилизация производства зерна в условиях изменения климата / А.В. Алабушев. Текст : непосредственный // Зерновое хозяйство России. 2011. N 2000 100
- 12. Аленин, П.Г. Эффективность систем зяблевой обработки почвы в зернопропашном звене севооборота на выщелоченном чернозёме Пензенской области : специальность 06.01.01 «Общее земледелие, растениеводство» : автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук / Аленин Павел Григорьевич. Кинель, 1997. 20 с. Текст : непосредственный.
- 13. Алиев, А.М. Вредоносность сорных растений / А.М. Алиев, В.Ф. Ладонин. Текст : непосредственный // Защита растений. 1995. С. 15-16.
- 14. Алисов, Б.П. Климат СССР: учебное пособие для вузов / Б.П. Алисов. Москва: Изд-во Моск. Ун-та, 1956. 127 с. Текст: непосредственный.
- 15. Алпатьев, А.М. Влагооборот культурных растений / А.М. Алпатьев Л.: Гидрометоиздат, 2003. 248 с. Текст : непосредственный.
- 16. Асмус, А.А. Биологизация севооборотов и продуктивность паровых звеньев с озимой пшеницей на черноземе выщелоченном лесостепи Поволжья: специальность 06.01.01 «Общее земледелие, растениеводство»: автореферат диссертации на соискание ученой степени кандидата сель-

- скохозяйственных наук / Асмус Александр Анатольевич. Кинель, 2009 20 с. Текст : непосредственный.
- 17. Аэробное целюлозолитическое сообщество ассоциантов сфагнового мха Sphagnumfallax как основа в процессах деструкции пожнивных остатков / А.В. Щербаков, И.В. Русакова, О.В. Орлова, Н.И. Воробьев, О.В. Свиридова, Е.Н. Щербакова, В.К. Чеботарь. Текст: непосредственный // Сельскохозяйственная биология. 2014. № 1. С. 54-62.
- 18. Аюпов, Д.Э. Адаптивные приемы технологии озимой пшеницы при биологизации севооборотов лесостепи Заволжья Поволжья : специальность 06.01.01 «Общее земледелие, растениеводство» : автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук / АюповДенис Энисович. Кинель, 2017. 157 с. Текст : непосредственный.
- 19. Базаров, Е.И. Методика биоэнергетической оценки технологий производства продукции растениеводства / Е.И. Базаров, Е.В. Глинка. Москва: 1983. 31 с. Текст: непосредственный.
- 20. Баздырев, Г.И. Защита сельскохозяйственных культур от сорных растений / Г.И. Баздырев.- Москва: КолосС, 2004. 328 с. ISBN 5-9532-0150-8. Текст : непосредственный.
- 21. Баздырев, Г.И. Эффективность длительного применения почвозащитных технологий / Г.И. Баздырев. Текст : непосредственный // Известия TCXA. 2005. Вып. 4. —C. 32-39.
- 22. Басовский, Л.Е. Экономический анализ (Комплексный экономический анализ хозяйственной деятельности): учебное пособие / Л.Е. Басовский. Москва: ИНФРА-М, 2019. 366 с. ISBN 978-5-16-006617-2. Текст: непосредственный.
- 23. Беленков, А.И. Приемы биологизации в севооборотах Нижнего Поволжья / А.И. Беленков, А.В. Зеленев, Б.О. Амантаев. Текст: непосредственный //Земледелие. 2014.-№ 1.- С. 23-26.

- 24. Берестецкий, О.А. Биологические основы севооборотов / О.А. Берестецкий. Текст : непосредственный // Минеральный и биологический азот в земледелии. Москва : Наука, 1985. С. 121–128.
- 25. Биологизация земледелия в основных земледельческих регионах России/ В.А. Семыкин, Н.И. Картамышев, В.Ф. Мальцев и др.; под ред. Н.И. Картамышева. Москва: КолосС, 2012. 472 с. ISBN 978-5-9532-0717-1. Текст: непосредственный.
- 26. Биологизация и адаптивная интенсификация земледелия в Центральном Черноземье / В.Е Шевченко [и др.]. Воронежский ГАУ им. К.Д. Глинки, 2000. 305 с. Текст : непосредственный.
- 27. Биологизация технологии возделывания озимой пшеницы в севооборотах лесостепной зоны Поволжья: монография / А.Л. Тойгильдин, В.И. Морозов, М.И. Подсевалов, Д.Э. Аюпов. Ульяновск: Ульяновский ГАУ, 2019. 200 с. ISBN 978-5-6043483-8-3. Текст: непосредственный.
- 28. Бирюков, К.Н. Агротехнологические особенности возделывания новых сортов озимой пшеницы / К.Н. Бирюков, М.А. Фоменко, О.В. Беседина. Текст: непосредственный // Известия Оренбургского государственного аграрного университета. 2013. № 4(42). С. 56-58.
- 29. Бондарев, А.Г. Почвенно-физические основы применения энергосберегающих минимальных обработок почвы / А.Г. Бондарев, И.Е. Кузнецова. Текст: непосредственный // Достижения науки и техники АПК. 2004. № 5. С.11-12.
- 30. Бушнев, А.С. Влияние систем основной обработки почвы на продуктивность звена зернопропашного севооборота рапс яровой пшеница озимая на черноземе выщелоченном Западного Предкавказья / А.С. Бушнев. Текст : непосредственный // Масличные культуры. Научнотехнический бюллетень Всероссийского научно-исследовательского института масличных культур. 2012. № 2 (151 152). С. 126-132.
- 31. Вавилов, П.П. Растениеводство / П.П. Вавилов, В.В Гриценко, В.С. Кузнецов. изд. 5-е, перераб. И доп. Москва: Агропромиздат, 1986.

- 512 c. Текст: непосредственный.
- 32. Вадюнина, А.Ф. Методы исследования физических свойств почвы / А.Ф. Вадюнина, З.А. Корчагина. Москва: Агропромиздат, 1986. 416 с. Текст: непосредственный.
- 33. Велкова, Н.И. Пыльцевая продуктивность горчицы белой / Н.И. Велкова, В.П. Наумкин. Текст : непосредственный // Пчеловодство. 2007. № 9. С. 21-22.
- 34. Вильямс, В.Р. Земледелие с основами почвоведения / В.Р. Вильямс Москва: ОГИЗ Сельхозгиз, 1939. 458 с. Текст : непосредственный.
- 35. Вильямс, В.Р. Полевой севооборот травопольной системы земледелия / В.Р. Вильямс // Собрание сочинений: В 12-ти т. Т. 6: Почвоведение : Земледелие с основами почвоведения (1927-1938). Москва : Сельхозгиз, 1951. С. 458. Текст : непосредственный.
- 36. Вильямс, В.Р. Почвоведение. Земледелие с основами почвоведения / В.Р. Вильямс. Москва: Сельхозгиз, 1939. 447 с. Текст : непосредственный.
- 37. Влияние предшественников и обработок на плодородие выщелоченных черноземов и урожайность озимой пшеницы / Г.Р. Дорожко, Н.С. Голоусов, Г.М. Зюзин, Ю.А. Юшко, В.М. Передериева, Г.А. Шматко. Текст: непосредственный // Актуальные аспекты повышения плодородия почв: сборник. Научных трудов. Ставрополь, 1994. С.41-47.
- 38. Влияние предшественников на полевую всхожесть семян, рост и развитие растений озимой пшеницы при возделывании по технологии без обработки почвы / И.Г. Стукалов, В.К. Дридигер, В.П. Белобров, С.А. Юдин. Текст: непосредственный // Известия Оренбургского государственного аграрного университета. 2018. –№ 5 (73). С.54-57.
- 39. Влияние элементов агротехнологий на засоренность посевов озимой пшеницы, возделываемой в зоне неустойчивого увлажнения / О.И. Власова, Г.Р. Дорожко, В.М. Передериева, И.А. Вольтерс, А.А. Жирков. –

- Текст: непосредственный // Научные инновации аграрному производству: материалы Международной научно-практической конференции, посвященной 100-летнему юбилею Омского ГАУ. Омск, 2018. С. 81–86.
- 40. Возделывание сортов зерновых культур селекции НИИСХ ЦРНЗ по технологиям разной интенсивности: рекомендации / Е.В. Дудинцев, П.М. Политыко, М.Н. Парыгина, А.А. Вольпе и др. Новоивановское (Немчиновка), 2008. 15 с. Текст : непосредственный.
- 41. Возняковская, Ю. М. Сидеральные удобрения регулятор почвенно-микробиологических процессов в условиях почвоутомления / Ю.М. Возняковский. Текст: непосредственный // Доклады ВАСХНИЛ. 1988. № 2. С. 22-27.
- 42. Волкова, Г.В. Изучение и использование генетического потенциала устойчивости пшеницы к грибным заболеваниям. Текст: непосредственный //Защита и карантин растений. 2010. № 9. С. 13-17.
- 43. Волкова, Г.С. Видовой и количественный состав сорных растений при минимализации обработки в зависимости от минеральных удобрений / Г.С. Волкова, А.М. Карасева. Текст : непосредственный // Проблемы борьбы с сорной растительностью : межвузовский сборник научных трудов ТСХА. Москва, 1986. С. 22-27.
- 44. Высоцкий, Г.Н. Общие положения об агрономическом значении почвенной структуры / Г.Н. Высоцкий // Материалы по выяснению вопроса о структуре почв. Москва, 1933. 315 с.- (Труды советской секции Международной ассоциации почвоведов. Комиссия 1. Физика почв; Т. 1. № 1). Текст: непосредственный.
- 45. Галиченко, И.И. Урожайность озимой пшеницы в зависимости от предшественников И.И. Галиченко. Текст : непосредственный // Земледелие. 2012. № 1. С. 35-36.
- 46. Галушко, Н.А. Качество зерна новых сортов мягкой озимой пшеницы селекции Северо-Кавказского ФНАЦ / Н.А. Галушко, Н.М. Ко-

- маров, Н.И. Соколенко. Текст : непосредственный // Вестник НГАУ. 2019. № 2(51). С. 7–13.
- 47. Глобальные проблемы рационального природопользования / В.М. Косолапов, И.А. Трофимов, Л.С. Трофимова, Е.П. Яковлева. Текст: непосредственный // Фундаментальные исследования. 2014. №5. С. 93-97.
- 48. Голоусов, Н.С. Влияние предшественников на плодородие выщелоченных черноземов и урожайность озимой пшеницы / Н.С. Голоусов, Ю.А. Юшко, Г.А. Шматко. Текст: непосредственный // Интенсивное использование пашни: сборник научных трудов Ставропольского СХИ. Ставрополь, 1993. С. 17–22.
- 49. Горянин, О.И. Возделывание полевых культур в Среднем Поволжье: монография / О.И. Горянин. Самара, 2019. 345 с. ISBN 978-5-6043023-9-2. Текст: непосредственный.
- 50. Горянин, О.И. Агротехнологические основы повышения эффективности возделывания полевых культур на чернозёме обыкновенном Среднего Заволжья: специальность 06.01.01 «Общее земледелие, растениеводство»: автореферат диссертации на соискание звания ученой степени доктора сельскохозяйственных наук: 06.01.01 / Горянин Олег Иванович. Саратов, 2016. 42 с. Текст: непосредственный.
- 51. Горянин, О.И. Дифференцированная система обработки почвы как элемент адаптивной системы земледелия самарской области / О.И. Горянин. Текст: непосредственный // Известия Оренбургского государственного аграрного университета. 2014. № 5 (49). С. 23-25.
- 52. Грибов, В.Д. Экономика организаций (предприятия): учебное пособие / В.Д. Грибов, В.П. Грузинов, В.А. Кузьменко. 4-е изд., стер. Москва: КНОРУС, 2015. 408 с. ISBN 978-5-406-01178-2. Текст: непосредственный.
- 53. Гуляева, Т.И. Рост производства сельскохозяйственной продукции основа продовольственной безопасности регионов / Т.И. Гуляева,

- О.В. Сидоренко. Текст : непосредственный // Экономический анализ: теория и практика. 2010. № 12. С. 31-36.
- 54. Гурин, А.Г. Влияние бобовых предшественников на засоренность посевов озимой пшеницы / А.Г. Гурин, И.М. Чадаев. Текст : непосредственный // Земледелие. 2018. № 4. С. 22-23.
- 55. Данилец, Е.А. Влияние звеньев полевого севооборота на биологические факторы плодородия почвы / Е.А. Данилец, О.И. Власова. Текст: непосредственный // Известия Нижне-Волжского агроуниверситетского комплекса: Наука и высшее профессиональное образование. 2019. № 3 (55). С. 184–191.
- 56. Дедов, А.В. Биологизация земледелия основа сохранения плодородия / А.В. Дедов. Текст : непосредственный // Земледелие. 2002. № 2. С. 10–12.
- 57. Дедов, А.В. Биологизация земледелия: современное состояние и перспективы / А.В. Дедов, Н.В. Слаук, М.А. Несмеянова. Текст: непосредственный // Вестник Воронежского государственного аграрного университета. 2012. -№ 3. С. 57-65.
- 58. Динамика плодородия почвы при возделывании яровой пшеницы в севооборотах и бессменно в зависимости т системы удобрений и обработки / С.Д. Гилев, И.Н. Цымбаленко, Ю.В. Суркова, Е.В. Нестерова. Текст: непосредственный // Земледелие. 2017.- № 4. С. 22-26.
- 59. Динамика плотности почвы чернозема южного при минимализации основной обработки / А.П. Солодовников, А.В. Летучий, Д.С. Степанов, Б.З. Шагиев, А.С. Линьков. Текст : непосредственный // Земледелие. 2015. № 1. С. 5-7.
- 60. Дорожко, Г.Р. Способ обработки фактор регулирования фитосанитарного состояния почвы и посевов озимой пшеницы на черноземах выщелоченных зоны умеренного увлажнения Ставропольского края / Г.Р. Дорожко, О.И. Власова, В.М. Передериева. Текст: непосредственный // Научный журнал КубГАУ. 2011. № 04 (68). С. 69-77.

- 61. Дорожко, Г.Р. Динамика продуктивной влаги в зависимости от способа основной обработки почвы / Г.Р. Дорожко, Д.Ю. Бородин. Текст : непосредственный // Состояние и перспективы развития агропромышленного комплекса Северо-Кавказского федерального округа : материалы 74-й научно-практической конференции Ставрополь: Параграф, 2010. С. 72-74.
- 62. Дорожко, Г.Р. Продуктивность многолетних трав трех лет жизни в условиях Ставропольского края / Г.Р. Дорожко, Д.А. Христенко. Текст: непосредственный // Состояние и перспективы развития агропромышленного комплекса Южного федерального округа: материалы 71-й региональной научно-практической конференции Ставрополь: Ставропольское 125 Н. Изд-во, 2007. С. 248-252.
- 63. Доспехов, Б.А. Влияние длительного применения удобрений и севооборота на засоренность полей / Б.А. Доспехов. Текст: непосредственный // Известия ТСХА. 1967. Вып. 5. С. 51-64.
- 64. Доспехов, Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований) / Б.А. Доспехов. 5-е изд., доп. и перераб.- Москва: Агропромиздат, 1985. 351 с. (Учебники и учеб. Пособия для высш. Учеб. Заведений). Текст: непосредственный.
- 65. Дояренко, А. Г. Факторы жизни растений / А.Г. Дояренко. Москва : Колос, 1966. 280 с. Текст : непосредственный.
- 66. Ефимов, А.А. Агроэкологическая оценка применения фунгицидов на озимой пшенице в центральной лесостепи : специальность 03.00.16 «Экология» : диссертация на соискание ученой степени кандидата сельскохозяйственных наук / Ефимов Александр Александрович. Брянск, 2008. 194 с. Текст : непосредственный.
- 67. Железняк, А.П. Влияние предшественников на качество зерна озимой пшеницы в зоне неустойчивого увлажнения Ставропольского края / А.П. Железняк, Г.А. Жамкочян. Текст : непосредственный // Инновационное развитие аграрной науки и образования : сборник научных трудов

- Международной научно-практической конференции, посвященной 90летию чл.-корр. РАСХН, Заслуженного деятеля РСФСР и ДР, профессора М.М. Джамбулатова. – Т. 2. – Махачкала, 2016. – С. 401-404.
- 68. Жуков, А.И. Регулирование баланса гумуса в почве / А.И. Жуков, П.Д. Попов. Москва: Росагропромиздат, 1988. 40 с. ISBN 5-260-00226-1. Текст: непосредственный.
- 69. Захаров, А.И. Эффективность адаптивно-ландшафтной системы земледелия в засушливых условиях Ульяновской области / А.И. Захаров, С.Н. Никитин. Текст : непосредственный // Земледелие. 2013. \mathbb{N}^2 3. C.3-5.
- 70. Захаров, Н.Г. Влияние систем основной обработки почвы на урожайность и качество зерна озимой пшеницы в условиях опытного поля Ульяновской ГСХА / Н.Г. Захаров, М.А. Полняков, Г.А. Идрисов. Текст : непосредственный // Ресурсосберегающие экологически безопасные технологии производства и переработки сельскохозяйственной продукции. Лапшинские чтения: материалы IX Международной научно-практической конференции Саранск : Изд-во Мордовского университета, 2013. С. 71—75.
- 71. Зезюков, Н.И. Роль лабильных форм органического вещества в плодородии черноземов / Н.И. Зезюков. Текст : непосредственный // Тезисы докладов Научной конференции, посвященной 100-летию плана В. В. Докучаева по борьбе с засухой и преобразования степей России (4-6 авг. 1992 г., Абакан). Кн. 2. Новосибирск, 1992. С. 13–15.
- 72. Зеленский, Н.А Биоэнергетическая эффективность чистого, занятых и сидерального паров в условиях Ростовской области / Н.А. Зеленский. Текст: непосредственный // Образование, наука, медицина: эколого-экономический аспект: сборник материалов Всероссийской научнопрактической конференции. Пенза: РИО ПГСХА, 2005. С. 91—92.
- 73. Зеленский, Н.А. Эколого-адаптивные системы земледелия на ландшафтной основе залог сохранения плодородия почвы / Н.А. Зелен-

- ский, Е.П. Луганцев. Текст : непосредственный // Проблемы борьбы с засухой : сборник научных трудов. – Т. 2. – Ставрополь: АГРУС, 2005. – С. 101-106.
- 74. Земледелие : рекомендовано Министерством сельского хозяйства РФ в качестве учебника для студентов высших учебных заведений, обучающихся по направлениям и специальностям агрономического образования / под ред. Г.И. Баздырева. Москва : Инфра-М, 2013. 608 с. (Высшее образование. Бакалавриат). ISBN 978-5-9532-0482-8. Текст : непосредственный.
- 75. Земледелие в Среднем Поволжье / Г.И. Казаков, Р.В. Авраменко, А.А. Марковский [и др.]; под ред. Г.И. Казакова. Москва: Колос, 2008. 308 с.- ISBN 978-5-10-004014-9. Текст: непосредственный.
- 76. Зерновые культуры (Выращивание, уборка, доработка и использование): учебно-практическое руководство / под общей редакцией Д. Шпаара. Москва: DLV АГРОДЕЛО, 2008 656 с. ISBN 978-5-903209-06-4. Текст: непосредственный.
- 77. Изучение урожайности и элементов ее структуры у сортов озимой мягкой пшеницы по предшественнику подсолнечник / Е.И. Некрасов, Д.М. Марченко, И.А. Рыбась и др. Текст : непосредственный // Зерновое хозяйство России. 2018. № 6 (60). С. 46-49.
- 78. Илларионов, А.И. Современные методы и средства защиты озимой пшеницы от сорных растений / А.И. Илларионов. Текст : непосредственный // Вестник Воронежского государственного аграрного университета. 2019. T. 12, No. 3 (62). C. 78-93.
- 79. Использование занятых, сидеральных и кулисно- мульчирующих паров в биологизированном земледелии / Н.А. Зеленский, А.П. Авдеенко, Е.Ю. Есионов, Р.В. Белавкин. Текст : непосредственный // Земледелие. 2007. \mathbb{N} 6. С. 15-17.
- 80. Казаков, Г.И. Севообороты в Среднем Поволжье / Г.И. Казаков.- Самара: САМГСХА, 2008. 102 с. Текст : непосредственный.

- 81. Казаков, Г.И. Обработка почвы в Среднем Поволжье: монография / Г.И. Казаков. Самара: Изд-во Самарской государственной сельскохозяйственной академии, 2008. 251 с. ISBN 978-5-88575-200-8 Текст : непосредственный.
- 82. Казьмин, Ф.В. Формирование урожайности и посевных качеств семян ячменя в зависимости от уровня химической защиты посевов в лесостепи Поволжья: специальность 06.01.05 «Селекция и семеноводство»: автореферат диссертации на соискание ученой степени кандидата сельско-хозяйственных наук / Казьмин Федор Васильевич. Пенза, 2009. 23 с.-Текст: непосредственный.
- 83. Карпачев, В.В. Научное обеспечение отрасли рапсосеяния в России: итоги и задачи на 2016-2020 гг. / В.В. Карпачев. Текст : непосредственный // Повышение эффективности селекции, семеноводства и технологии возделывания рапса и других масличных капустных культур : сборник научных докладов на международном координационном совещании по рапсу (г. Липецк, 7-9 июля 2015 г.). Елец: Елецкий государственный университет им. И.А. Бунина, 2016. С. 3-10.
- 84. Картамышева, Е.В. Проблемы и перспективы возделывания горчицы сарептской / Е.В. Картамышева. Текст : непосредственный // Земледелие. 2006. № 4.- С. 9-14.
- 85. Каширин, А.П. Возделывание ярового рапса и яровой сурепицы в занятом пару /А.П. Каширин, Т.Н. Плетнева. Текст : непосредственный // Севообороты и обработка почвы в интенсивном земледелии.- Горький, 1986. С.36-40.
- 86. Каштанов, А.Н. Развитие и совершенствование адаптивно-ландшафтых систем земледелия / А.Н. Каштанов. Текст: непосредственный // Освоение адаптивно-ландшафтных систем земледелия и агротехнологий: материалы Всероссийской конференции. Ульяновск: Корпорация технологий продвижения, 2010. С. 14-21.

- 87. Квашин, А.А. Урожайность и качество зерна, озимой пшеницы в условиях недостаточного увлажнения Краснодарского края // А.А. Квашин, Н.Н. Нещадим, К.Н. Горпинченко. Текст: непосредственный // Политематический сетевой электронный научный журнал КубГАУ. 2017. № 128. С. 985–1003.
- 88. Керимов, Я.Г. Эффективность применения удобрений в севооборотах с различным насыщением зерновыми культурами в условиях горной зоны Азербайджана / Я.Г. Керимов. Текст: непосредственный // Агрохимия. 2009. № 12. С. 27-31.
- 89. Кирюшин, В.И. Минимальные обработки почвы: перспективы и противоречия / В.И. Кирюшин. Текст : непосредственный // Главный агроном. 2007. N 6. С. 16-20.
- 90. Кирюшин, В.И. Теория адаптивно-ландшафтного земледелия и проектирование агроландшафтов / В. И. Кирюшин. Москва : КолосС, 2011. 443 с. ISBN 978-5-9532-0779-9. Текст : непосредственный.
- 91. Кирюшин, В.И. Управление плодородием почв и продуктивностью агроценозов в адаптивно-ландшафтных системах земледелия / В.И. Кирюшин. Текст: непосредственный // Почвоведение. 2019. № 9. С. 1130-1139.
- 92. Кислов, А.В. Проблемы повышения плодородия почв на Южном Урале / А.В. Кислов, М.В. Черных. Текст : непосредственный // Плодородие. 2007. № 3 (36). С. 5-7.
- 93. Кисс, Н.Н. Технология возделывания озимой пшеницы: ресурсосберегающая агротехнология возделывания озимой пшеницы на эрозионно опасных склонах черноземов обыкновенных / Н.Н. Кисс, А.Е. Мищенко. Текст: непосредственный // Фермер. Поволжье. 2016. № 4 (46). С. 42–47.
- 94. Когденко, В.Г. Экономический анализ: учебное пособие / В.Г. Когденко. 2-е изд., перераб. И доп. Москва : ЮНИТИ-ДАНА, 2011. 392 с. ISBN 978-5-238-01535-4. Текст : непосредственный.

- 95. Копосов, И.П. Агропочвенные районы Ульяновской области / И.П. Копосов. Ульяновск : Ульяновская правда, 1948. 203 с. Текст : непосредственный.
- 96. Коржов, С.И. Влияние скорости разложения послеуборочных остатков на динамику общей численности микроорганизмов / С.И. Коржов. Текст: непосредственный // Современные проблемы сохранения плодородия черноземов: материалы международной научно-практической конференции, посвященной 170-летию В.В. Докучаева. Воронеж, 2016. С. 70–79.
- 97. Коринец, В.В. Системно-энергетический подход обработки почвы / В.В. Коринец. Текст : непосредственный // Земледелие. 2014. $N_{\rm D}$ 6. С. 36-40.
- 98. Коротких, Н.А. Влагообеспеченность яровой пшеницы при технологии No-Till в Лесостепи Приобья / Н.А. Коротких, Н.Г. Власенко, С.П. Кастючик. Текст: непосредственный // Земледелие. 2013. № 3. С.21-23.
- 99. Корчагин, В.А. Агротехнические основы полевых специализированных севооборотов в степных районах Среднего Поволжья / В.А. Корчагин, А.И. Щетинин, Н.А. Неясов. Текст: непосредственный // Агрономические основы специализации севооборотов.- Москва: Агропромиздат, 1987. С. 130-135.
- 100. Корчагин, В.А. Чистый пар основа севооборота / В.А. Корчагин. Текст : непосредственный // Земледелие. 1989. № 3. С.9.
- 101. Красненков, А.Н. Фунгициды для защиты посевов озимой пшеницы от болезней / А.Н. Красненков, Н.Н. Лысенко. Текст : непосредственный // Достижения науки агропромышленному комплексу : сборник трудов научно-практической конференции. Орел, 2013. С. 138-142.
- 102. Кузыченко, Ю.А. Уплотнение почвы в процессе ее основной обработки в полевом звене севооборота / Ю.А. Кузыченко, А.К. Кобозев. –

- Текст : непосредственный // Сельскохозяйственный журнал. -2018. Т. 2. № 11. С. 18–22.
- 103. Куликова, А.Х. Агроэкологическая оценка чернозема лесостепи Поволжья и концепция воспроизводства его плодородия / А.Х. Куликова. Текст: непосредственный // Всероссийская научно-практическая конференция «Русский чернозем—2000». Москва, 2001. С. 125-129.
- 104. Кутилкин, В.Г. Комбинированная система обработки почвы в Лесостепи Среднего Заволжья / В.Г. Кутилкин. Текст : непосредственный // Земледелие. 2014. № 7. С. 27-29.
- 105. Лебедь, Е.М. Влияние предшественников и систем удобрения на биологическую активность почвы и урожайность озимой пшеницы в юго-восточной части степи Украины / Е.М. Лебедь, Л.М. Десятник, Д.А. Коцюбан. Текст: непосредственный // Вестник Прикаспия. 2014. -№ 3(6). С. 26-30.
- 106. Левитин, М.М. Микроорганизмы в условиях глобального изменения климата / М.М. Левитин. Текст : непосредственный // Сельско-хозяйственная биология. 2015. № 5. С. 641-647.
- 107. Лыков, А.М. От плодородия почвы к плодородию биогеоценозов / А.М. Лыков. – Текст : непосредственный // Экологические основы повышения устойчивости и продуктивности агроландшафтных систем. – Орел: Орловский ГАУ, 2001. – С. 23–32.
- 108. Лыков, А.М. Гумус и плодородие почвы / А. М. Лыков. Москов : Московский рабочий, 1985. 190 с. Текст : непосредственный.
- 109. Лыков, А.М. Органическое вещество пахотных почв Нечерноземья / А.М. Лыков, А.М. Еськов, М.Н. Новиков. – Москва: Россельхозакадемия – ГНУ ВНИПТИОУ, 2004.- 630 с. – ISBN 5-85941-086-7. – Текст : непосредственный.
- 110. Мамырко Ю.В. Продуктивность звеньев зернопропашного севооборота с горчицей, льном масличным и озимой пшеницей на черноземе

- выщелоченном западного Предкавказья / Ю.В. Мамырко. Краснодар, 2009. 25 с. Текст : непосредственный.
- 111. Матюк, Н.С. Урожайность культур и плодородие почвы в зависимости от ее обработки и удобрения / Н.С. Матюк. Текст : непосредственный // Плодородие. 2008. N 1. C. 38-40.
- 112. Мельник, А.Ф. Влияние предшественников на урожайность и качество зерна озимой пшеницы / А.Ф. Мельник, Б. С. Кондрашин, Н.В. Митюшкин. Текст : непосредственный // Вестник Орловского ГАУ. 2009. N 4. С. 27—29.
- 113. Мельник, А.Ф. Влияние предшественников озимой пшеницы на свойства и биологическую активность почвы / А.Ф. Мельник. Текст: непосредственный // Антропогенная эволюция современных почв и аграрное производство в изменяющихся почвенно-климатических условиях: сборник материалов Международной научно-практической конференции. Орел, 2015. С. 60—63.
- 114. Методика определения и оценки энергопотенциала органического вещества почвы в агроландшафтах : методические рекомендации / В.М. Володин, Н.П. Масютенко, В.В. Шеховцова, С.Я. Гатипова, А.И. Шеховцов. Курск: Юмэкс, 2000. 29 с. Текст : непосредственный.
- 115. Мехдиев, И.Т. Изучение воздействия фунгицидов на продуктивность, применяемых на посевах озимой пшеницы / И.Т. Мехдиев. Текст : непосредственный // Интеллектуальный потенциал XXI века: ступени познания. 2016. No. 34. С. 53-60.
- 116. Михно, Л.А. Выявление устойчивых к корневой гнили форм озимой пшеницы с использованием методов культуры каллусов и клеток новый подход в системе интегрированной защиты растений / Л.А. Михно. Текст: непосредственный // Актуальные вопросы экологии и природопользования: сборник научных трудов по материалам V Международной научно-практической конференции. Ставрополь: АГРУС, 2017. С. 222—225.

- 117. Морозов, В.И. Дифференциация систем земледелия и их практическое освоение в лесостепи Поволжья / В.И. Морозов. Текст: непосредственный // Дифференциация систем земледелия и плодородие чернозема лесостепи Поволжья: тематический сборник научных трудов. Ульяновск, 1996. С. 12-31.
- 118. Морозов, В.И. Биологизация севооборотов и регулирование плодородия чернозема выщелоченного лесостепи Поволжья / В.И. Морозов, А.Л. Тойгильдин. Текст : непосредственный // Современные системы земледелия: опыт, проблемы, перспективы: материалы международной научно-практической конференции Ульяновск: Ульяновская ГСХА, 2011. С. 176-187.
- 119. Морозов, В.И. Влияние севооборотов на баланс гумуса в выщелоченном черноземе лесостепи Поволжья / В.И. Морозов, М.И. Подсевалов, А.Х. Куликова. Текст: непосредственный// Агрохимия. № 10. 1994. С. 3-10.
- 120. Морозов, В.И. Дифференциация севооборотов, плодородие чернозема и устойчивость агроэкосистем лесостепи Поволжья / В.И. Морозов, М.И. Подсевалов, Е.А. Петухов. Текст: непосредственный // Севооборот в современном земледелии: сборник докладов Международной научной конференции. Москва, 2004. С. 65-69.
- 121. Морозов, В.И. Продуктивность и качество зерна озимой пшеницы в зависимости от приемов биологизации в севооборотах лесостепи Поволжья / В.И. Морозов, М.И. Подсевалов, А.А. Асмус. Текст : непосредственный // Материалы Всероссийского «Круглого стола» на тему: «Ресурсосберегающие технологии: опыт, проблемы, перспективы». Ульяновск, 2007. С. 113-116.
- 122. Морозов, В.И. Продуктивность паровых звеньев севооборотов с озимой пшеницей и плодородие почвы в Лесостепи Поволжья / В. И. Морозов, А. Л. Тойгильдин, А. А. Асмус, Н. А. Хайртдинова. Текст : непосредственный // Аграрная наука и образование на современном этапе

- развития: опыт, проблемы и пути их решения : материалы II-ой Международной научно-практической конференции 8-10 июня 2010. Ульяновск : УГСХА, 2010. Том V : Агрономия и агроэкология. С. 107-113
- 123. Назарова, А.Н. Фитосанитарная обстановка на посевах пшеницы в Российской Федерации (1991 2008 гг.). Аналитический обзор / А.Н. Назарова, С.С. Санин. Текст : непосредственный // Защита и карантин растений. 2010. № 2. С. 70-78.
- 124. Нарциссов, В.П. Предшественники урожайность озимых на серых лесных почвах Волго-Вятского района / В.П. Нарциссов, В.П. Заикин. Текст: непосредственный // Агрономические основы специализации севооборотов. Москва: Агропромиздат, 1987. С. 40.
- 125. Немцев, Н.С. Агроэкологические основы почвозащитных систем земледелия Среднего Поволжья. Ульяновск, 2005. 240 с. Текст : непосредственный.
- 126. Немцев, Н.С. Научно-практические основы совершенствования севооборотов в лесостепи Поволжья / Н.С. Немцев, В.А. Потушанский, А.И. Захаров. Ульяновск, 2000. 149 с. Текст: непосредственный.
- 127. Несмеянова, М.А. Биологические свойства почвы и урожайность культур в звене севооборота пар—озимая пшеница / М.А. Несмеянова, А.А. Дедов, Л.А. Распопова. Текст: непосредственный // Эволюция современной науки: сборник статей Международной научно-практической конференции Уфа, 2015. С. 29—32.
- 128. Неснов, А.А. Управление сорными растениями в агрофитоценозе озимой пшеницы в зависимости от предшественников / А.А. Неснов. Текст : непосредственный // Электронный научный журнал. 2017. № 4-1(19). С. 79–83.
- 129. Николаев, В.А. Влияние разных способов обработки на агрофизические свойства и структурное состояние почвы / В. А. Николаев, М. А. Мазиров, С. И. Зинченко. Текст : непосредственный // Земледелие. 2015. N 25. C. 18-20.

- 130. Никонов, А.А. Система ведения сельского хозяйства Ставропольского края / А.А. Никонов и др. –Ставрополь, 1980. –495 с. Текст : непосредственный.
- 131. Новиков, В.М. Влияние агротехнологических приёмов и погодных условий на биологическую активность тёмно-серой лесной почвы при возделывании зернобобовых и крупяных культур / В.М. Новиков. Текст : непосредственный // Зернобобовые и крупяные культуры. 2016. \mathbb{N} 4 (20) С. 116-120.
- 132. Новохацкая, Д.М. Влияние агротехнологических приемов возделывания льна долгунца на урожайность и качество волокна в условиях Ленинградской области : специальность 06.01.01 «Общее земледелие, растениеводство» : автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук / Новохацкая Дарья Михайловна. Санкт-Петербург. 2018. 22 с. Текст : непосредственный.
- 133. Обработка почвы в ЦЧР / С.И. Коржов, Т.А. Трофимова, В.А. Маслов, А.П. Пичугин. Воронеж: Воронежский ГАУ, 2010. 199 с. ISBN 978-5-7267-0615-3. Текст: непосредственный.
- 134. Обработка почвы как фактор регулирования почвенного плодородия: монография / А.Ф. Витер, В.И. Турусов, В.М. Гармашов, С.А. Гаврилова. Москва: ИНФРА-М, 2014. 173 с. ISBN 978-5-88242-845-6. Текст: непосредственный.
- 135. Овсянникова, Г.В. Влияние предшественников на урожайность озимой пшеницы в зависимости от обеспеченности почвы влагой и основными элементами питания / Г.В. Овсянникова. Текст: непосредственный // Научное обеспечение стабильности производства зерновых и кормовых культур: сборник научных статей. Ростов на Дону: Книга, 2008. С. 332-337.
- 136. Оптимальные чередования сельскохозяйственных культур в севооборотах плакорныхагроландшафтов юго-востока Центрально-Черноземного района / В.И. Турусов, В.М. Гармашов, О.А. Абанина, Т.И.

- Михина, Н.В. Дронова. Текст : непосредственный // Достижения науки и техники АПК. 2016. Т. 30, № 2. С. 54-57.
- 137. Оптимизация содержания лабильного органического вещества в почвах лесостепи Поволжья / Н.Ф. Ганжара, Р.Ф. Байбеков, Б.А. Борисов, С.М. Надежкин. Текст: непосредственный // Плодородие. 2010. № 5. С. 15-17.
- 138. Организация, нормирование и оплата труда на предприятиях АПК: учебник / Ю.Н. Шумаков, В.И. Еремин, С.В. Жариков и др.; под ред. Ю.Н. Шумакова. Москва: КолосС, 2015. 232 с. Текст: непосредственный.
- 139. Ореховская, А.А. Урожайность и качество озимой пшеницы в зависимости от приемов возделывания / А.А. Ореховская, Е.В. Навольнева. Текст: непосредственный // Перспективные направления развития сельского хозяйства: труды Всероссийского совета молодых ученых и специалистов аграрных образовательных и научных учреждений. Москва, 2015. С. 40–43.
- 140. Орлов, А.Н. Ресурсосберегающие системы зяблевой обработки почвы в современном земледелии / А.Н. Орлов, С.В. Богомазов, В.В. Манейлов. Текст: непосредственный // Нива Поволжья. 2007. № 2 (3).- С. 17-20.
- 141. Орлов, А.Н. Совершенствование элементов технологий возделывания яровой пшеницы, обеспечивающих уменьшение энергетических затрат и повышение урожайности в чернозёмных почвах лесостепи Среднего Поволжья / А.Н. Орлов, О А. Ткачук, Е.В. Павликова. Текст: непосредственный // Нива Поволжья. 2012. № 2 (23). С.40-45.
- 142. Пальчиков, Е.В. Урожайность и некоторые показатели качества зерна озимой пшеницы в зависимости от предшественников / Е.В. Пальчиков, С.А. Волков, И.Н. Мацнев. Текст : непосредственный // Технологии пищевой и перерабатывающей промышленности АПК продукты здорового питания. 2017. № 2 (16). С. 24–28.

- 143. Парахин, Н.В. Влияние предшественника на продуктивность и качество зерна озимой пшеницы / Н.В. Парахин, А.Ф. Мельник. Текст: непосредственный // Вестник АПК Ставрополья. 2015. № 4 (20). С. 248–252.
- 144. Парахин, Н.В. Урожайность и качество зерна озимой пшеницы в зависимости от факторов биологизации / Н.В. Парахин, А.Ф. Мельник. Текст: непосредственный // Зерновое хозяйство России. 2015. № 4. С. 1–5.
- 145. Парыгина, М.Н. Эффективность технологий возделывания озимой пшеницы разных сортов по предшественникам в центральном Нечерноземье: специальность 06.01.01 «Общее земледелие, растениеводство», 06.01.09 «Овощеводство»: диссертация на соискание ученой степени кандидата сельскохозяйственных наук / Парыгина Марина Николаевна. Немчиновка, 2009. —171 с. Текст: непосредственный.
- 146. Паштецкий, В.С. Сравнительная эффективность чистых и занятых паров в Крыму / В.С. Паштецкий, К.Г. Женченко, Л.А. Радченко. Текст: непосредственный // Таврический вестник аграрной науки. 2016. № 2(6). С. 99-106.
- 147. Перспективы «нулевой» обработки почвы при возделывании кукурузы на зерно в Волго-Вятском регионе/ А.И. Волков, Н.А. Кириллов, Л.Н. Прохорова, Л.Н. Куликов. Текст: непосредственный //Земледелие. 2015. № 1.- С.3-5.
- 148. Перфильев, Н. В. Урожайность зерновых и качество зерна пшеницы при системах основной обработки почвы / Н.В. Перфильев, О.А. Вьюшина. Текст: непосредственный // Земледелие. 2017.- № 5.- С. 36-38.
- 149. Петрова, Л.Н. Влияние технологии возделывания сельскохозяйственных культур на содержание продуктивной влаги и плотность почвы в севообороте / Л.Н. Петрова, В.К. Дриггер. Текст : непосредственный // Земледелие. 2015. № 5. С. 16-18.

- 150. Пилипенко, Н.Г. Влияние редьки масличной в занятых и сидеральных парах на фитосанитарное состояние посевов зерновых культур в полевом севообороте / Н.Г. Пилипенко, О.Т. Андреева. Текст: непосредственный // Вестник АПК Ставрополья. 2015. № 4(20). С.. 253-260.
- 151. Письменная, Е.В. Влияние сортов и предшественников озимой пшеницы на плодородие почвы, урожайность и качество зерна в Ставропольском крае / Е.В. Письменная, М. Ю. Азарова, Л.Г. Курасова. Текст: непосредственный // Аграрный научный журнал. 2020. № 8. С.32-37.
- 152. Пичугин, А.Н. Запасы доступной влаги в почве под озимой пшеницей по занятому и сидеральному парам / А.Н. Пичугин. Текст : непосредственный // Земледелие. 2013. № 6. С. 12-15.
- 153. Плескачев, Ю.Н. Приемы обработки каштановых почв Нижне-го Поволжья / Ю.Н. Плескачев. Текст: непосредственный // Земледелие. 2005. № 4.- С. 14-15.
- 154. Плодородие почвы и продуктивность агробиоценозов в полевых севооборотах лесостепи Поволжья : монография / Р.С. Голомолзин, В.И. Морозов, М.И. Подсевалов, С.В. Шайкин, А.В. Карпов, Е.А. Петухов. Москва, 2012. . 98 с. ISBN 978-5-86785-288-7. Текст : непосредственный.
- 155. Подсевалов, М.И. Влияние севооборотов и обработки почвы на режим влажности и урожайность пшеницы / М.И. Подсевалов, И.К. Милодорин. Текст: непосредственный // Теория и практика актуальных исследований: материалы международной научно-практической конференции. 17 апреля 2012. Краснодар, 2012. Т. 2. С. 187 191.
- 156. Попов, А.И. Гуминовые вещества: свойства, строение, образование / А.И. Попов ; под ред. Е.И. Ермакова. Санкт-Петербург, 2004. 248 с. ISBN 5-288-03516-4. Текст : непосредственный.
- 157. Практикум по земледелию : учебное пособие / И.П. Васильев, А.М. Туликов, Г.И. Баздырев и др. М. : КолосС, 2004 . 424 с. ISBN 5-9532-0141-9. Текст : непосредственный.

- 158. Пригге, Г. Грибные болезни зерновых культур/ Г. Пригге, М. Герхард, М. Хабермаер. Мюнхен: Ландвиртшафтсферлаг, 2004. 181 с. Текст: непосредственный.
- 159. Приемы обработки каштановой почвы и продуктивность звена севооборота «пожнивная культура озимая пшеница» / Г.Н. Гасанов, А.А. Бексултанов, Ж.Н. Абдуллаев, Н.Р. Магомедов. Текст: непосредственный // Аграрная наука. 2012. № 3. С. 9-12.
- 160. Прогрессирующие болезни озимой и яровой пшеницы / Л.Н. Назарова, А.А. Мотовилин, Л.Г. Корнева, С.С. Санин. Текст : непосредственный // Защита и карантин растений. № 7. 2006. С. 12–14.
- 161. Продуктивность зерновых севооборотов в условиях изменения климата / Н.А. Морозов, С.А. Лиходиевская, А.И. Хрипунов, Е.Н. Общия. Текст: непосредственный // Земледелие. 2016. № 8. С. 8–11.
- 162. Продуктивность зерновых севооборотов с различным насыщением чистыми и занятыми парами / Н.А. Морозов, С.А. Лиходиевская, А.И. Хрипунов, Е.Н. Общия. Текст : непосредственный // Вестник Курской государственной сельскохозяйственной академии. 2018. \mathbb{N} 5. С. 29-35.
- 163. Продуктивность пожнивных культур в сравнении с естественным фитоценозом в Приморской подпровинции Дагестана / Г.Н. Гасанов, Ж.Н. Абдуллаев, Н.Р. Магомедов, А.А. Бексултанов. Текст: непосредственный // Проблемы развития АПК региона. 2012. № 1 (19). С. 4—7.
- 164. Процессы трансформации органического вещества в почвах и его качественный состав / В.И Кирюшин, Н.Ф. Ганжара, И.С. Кауричев, Д.С. Орлов, А.А. Титлянова, А.Д. Фокин. Текст: непосредственный // Концепция оптимизации режима органического вещества почв в агроладшафтах. Москва: Изд-во МСХА, 1993. С. 18-26.
- 165. Прянишников, Д.Н. О значении чередования культур в севооборотах / Д.Н. Прянишников. Текст : непосредственный // Избранные сочинения.- Москва, 1965. Т. 3. С. 169-177.

- 166. Результаты исследований по влиянию предшественников на урожайность зерновых культур / С.И. Камбулов, В.Б. Рыков, Ю.А. Семенихина, В.В. Колесник. Текст: непосредственный // Состояние и перспективы развития сельскохозяйственного машиностроения: сборник статей 11-й Международной научно-практической конференции в рамках 21-й Международной агропромышленной выставки «Интерагромаш-2018». Ростов-на-Дону, 2018. С. 142—144.
- 167. Роль предшественников пшеницы озимой в севообороте в условиях ЦЧЗ / В.И. Турусов, В.М. Гармашов, О.А. Богатых, Е.А. Балюнова. Текст: непосредственный // Аграрная наука. 2017. №11-12. С. 10-11.
- 168. Рыбалко, Т.С. Современные энергосберегающие технологии / Т.С. Рыбалко. Текст: непосредственный // Аграрная наука. 2007. №6. С. 11-16.
- 169. Сабитов, М.М. Эффективность способов обработки почвы и средств химизации в зернопаровом севообороте / М.М. Сабитов, Р.Б. Шарипова. Текст : непосредственный // Достижение науки и техники АПК 2015. N = 10. C. 31-34.
- 170. Саматов, Б.К. Динамика содержания гумуса в почвах Ульяновской области / Б.К. Саматов, В.М. Жарков. Текст: непосредственный // Материалы Всероссийского «Круглого стола» на тему: «Ресурсосберегающие технологии: опыт, проблемы, перспективы». Ульяновск, 2007. С. 82-85.
- 171. Санин, С.С. Проблемы фитосанитарии России на современном этапе / С.С. Санин. Текст : непосредственный // Защита и карантин растений. 2016. № 4. С. 3–6.
- 172. Семенов, В.М. Агроэкологические функции растительных остатков в почве / В.М. Семенов, А.К. Ходжаева. Текст : непосредственный// Агрохимия. 2006. N 27. C. 63-81.
- 173. Синих, Ю.Н. Влияние длительного использования пожнивных сидератов на динамику развития корневых гнилей и засоренность посевов /

- Ю.Н. Синих. Текст : непосредственный // Зерновое хозяйство. 2006. № 4. С. 31-32.
- 174. Синякова, О.В. Особенности технологии возделывания льна масличного на Среднем Урале: специальность 06.01.01 «Общее земледелие, растениеводство»: автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук / Синякова Ольга Валерьевна. Усть-Кинельский. 2017. 20 с. Текст: непосредственный.
- 175. Солодун, В.И. Влияние чистых и сидеральных паров на засоренность зерновых культур / В.И. Солодун, Л.А. Цвынтарная. Текст: непосредственный // Вестник ИрГСХА. 2016. -№ 72. С. 22-27.
- 176. Соломонова, Л.В Эффективность защиты озимой пшеницы от комплекса вредных организмов при различных системах удобрения на черноземе выщелоченном Западного Предкавказья : специальность 06.01.07 «Защита растений» : автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук / Соломонова Лариса Владимировна. Краснодар, 2012. 24 с. Текст : непосредственный.
- 177. Сорные растения в агрофитоценозах полевых культур и меры борьбы с ними: учебное пособие для студентов по агрономическим специальностям / О.И. Власова и др. Ставрополь: АГРУС, 2004. 51 с. ISBN 5-95-96-0045-5. Текст: непосредственный.
- 178. Сорокин, Н.Д. Оценка микробиологической активности почв / Н.Д. Сорокин. Текст: непосредственный // Тезисы докладов II съезда общества почвоведов России: Кн. 1. Санкт-Петербург, 1996. С. 291-292.
- 179. Станков Н.З. Корневая система растений / Н.З Станков // М.:Колос, 1964.- С. 217.
- 180. Терентьев, О.В. Агроэкологические и экономикоэнергетические основы оптимизации полевых севооборотов в Среднем Заволжье: специальность 06.01.01 «Общее земледелие, растениеводство»: диссертация на соискание ученой степени доктора сельскохозяйственных

- наук / Терентьев Олег Владимирович. Самара, 2006. 300 с. Текст : непосредственный.
- 181. Тимирязев, К.А. Избранные сочинения / К.А. Тимирязев Т. І. Москва: Сельхозиздат, 1957. 723 с. Текст : непосредственный.
- 182. Тихонов, Н.Н. Влияние предшественников на урожайность и качество зерна озимой пшеницы в условиях лесостепи Среднего Поволжья / Н.Н. Тихонов. Текст : непосредственный // Молодой ученый. 2016. \mathbb{N} 23 (126). С. 192-196.
- 183. Ткаченко, Д.А. Улучшение фитосанитарного состояния посевов озимой пшеницы без применения химических средств / Д.А. Ткаченко, В.М. Передериева. Текст: непосредственный // Материалы Международной научной конференции «Татищевские чтения: актуальные проблемы науки и практики», г. Тольятти, 21-24 апреля 2004 г.: Актуальные проблемы экологии и охраны окружающей среды. Тольятти: Волжский университет им. В.Н. Татищева, 2004. С. 202-204.
- 184. Тойгильдин, А.Л. Абиотические факторы и устойчивость урожайности озимой пшеницы в условиях лесостепи Поволжья/ А.Л. Тойгильдин, В.И. Морозов, М.И. Подсевалов. Текст: непосредственный // Вестник Ульяновской государственной сельскохозяйственной академии. 2015. № 1(29). С. 29-35.
- 185. Тойгильдин, А.Л. Научно-практическое обоснование биологизации земледелия лесостепной зоны Поволжья: монография / А.Л. Тойгильдин, В.И. Морозов, М.И. Подсевалов, Д.Э. Аюпов, И.А. Тойгильдина. Ульяновск, 2020. 386 с. ISBN 978-5-6043485-2-9. Текст: непосредственный.
- 186. Тойгильдин, А.Л. Научно-практическое обоснование биологизации земледелия и воспроизводства плодородия чернозема выщелоченного лесостепи Поволжья / А.Л. Тойгильдин. Усть-Кинельский, 2018. 41 с. Текст: непосредственный.

- 187. Торопова, Е.Ю. Влияние способов обработки почвы на фитосанитарное состояние посевов / Е.Ю. Торопова, В.А. Чулкина, Г.Я. Стецов. – Текст: непосредственный // Защита и карантин растений. — 2010. — №1. — С. 26-27.
- 188. Трепачев, Е.П. Влияние пожнивно-корневых остатков и неучтенного органического вещества люцерны и костра безостого на плодородие почв / Е.П. Трепачев, Л.Д. Алейникова. Текст: непосредственный // Почвоведение. 1982. №4. С.120-127.
- 189. Трофимов, С.Я. Минерализация лабильных фрагментов органического вещества гумусово-аккумулятивного горизонта дерновоподзолистой почвы / С.Я. Трофимов. Текст: непосредственный // Почвоведение. 2012. № 12. С. 12-59.
- 190. Трофимова, Т.А. Обработка почвы в биологизированных севооборотах / Т.А. Трофимова, С.И. Коржов. Текст : непосредственный // Агро XXI. 2013. № 7. С. 21-25.
- 191. Туев, Н. А. Микробиологические процессы гумусообразования / Н.А. Туев. Москва : Агропромиздат, 1989. 236 с. ISBN 5-10-001337-0 . Текст : непосредственный.
- 192. Тюрин, И.В. Плодородие почв и проблема азота в почвоведении и земледелии / И.В. Тюрин. Москва, 1957. 21 с. Текст : непосредственный.
- 193. Тютюнов, С.И. Плодосменный севооборот основной фактор сохранения и повышения плодородия почвы в Белгородской области / С.И. Тютюнов, В.Д. Соловиченко, И.В. Логвинов. Текст: непосредственный // Земледелие. 2014. № 2. С. 29-31.
- 194. Умаева, Л.З. Влияние погодных условий на качество зерна мягкой пшеницы / Л.З. Умаева, В.С. Токарев, Л.И. Лисунова. Текст : непосредственный // Кормопроизводство. 2017. № 10. С. 22—25.
- 195. Усенко, В.И. Водный режим выщелоченного чернозема в зависимости от предшественника и приема основной обработки / В.И. Усенко,

- С.В. Усенко. Текст : непосредственный // Земледелие. 2018. № 2. С.14-17.
- 196. Фадеев, И.Д. Влияние сроков посева и норм высева на урожайность новых сортов озимой пшеницы / И.Д. Фадеев, М.Ш. Тагиров, И.Н. Газизов. Текст: непосредственный // Земледелие. 2019. №3. С. 21-24.
- 197. Федотов, А.А. Влияние влагообеспеченности на урожайность озимой пшеницы в Среднем Поволжье / А.А. Федотов, Е.А. Горонжин, А.И. Хрипонов. Текст: непосредственный // Земледелие. 2014. № 3. С. 21-22.
- 198. Фетюхин, И.В. Интегрированная защита озимой пшеницы от сорняков / И.В. Фетюхин, А.А. Баранов. Текст : непосредственный // Зерновое хозяйство России. 2019. № 1 (61). С. 6—9.
- 199. Филиппова, Е.А. Озимая пшеница фактор получения качественного зерна // Е.А. Филиппова, Н.Ю. Банникова, Л.Т. Мальцева. Текст: непосредственный // Научное обеспечение инновационного развития агропромышленного комплекса регионов РФ: материалы Международной научно-практической конференции. Курган, 2018. С. 678-681.
- 200. Фисюнов, Н.В. Влияние обработки почвы и способа посева на водопотребление озимой пшеницы в Зауралье. Текст: непосредственный / Н.В. Фисюнов, Д.И. Еремин // Земледелие. 2013. № 3. С. 24-26.
- 201. Фитосанитарное состояние агроценоза озимой пшеницы и ее продуктивность в севооборотах Среднего Поволжья/ В.И. Морозов, М.И. Подсевалов, Д.Э. Аюпов, В.В Басенков. Текст : непосредственный // Поволжье Агро 2014. №10 (57), С. 62-64.
- 202. Формирование урожая озимой пшеницы в зависимости от системы удобрений при минимизации основной обработки почв / М.М, Ильясов, А.Х. Яппаров, Ф.Ш. Шайхутдинов, Н.Л. Шаронова, Н.Ш. Хисамутдинов. Текст: непосредственный // Вестник Казанского ГАУ 2014. № 1 (31). С. 117-121.

- 203. Хакимова, К.К. Изменение структуры почвы под влиянием предшественников озимой пшеницы / К.К. Хакимова, А.В. Ширяев. Текст: непосредственный // Молодежный аграрный форум–2018: материалы международной студенческой научной конференции. п. Майский, Изд-во ФГБОУ ВО Белгородский ГАУ, 2018. С. 22-24.
- 204. Хрипунов, А.И. Влияние предшественников, сроков сева и условий минерального питания на динамику накопления сухого вещества сортами озимой пшеницы / А.И. Хрипунов, Н.А. Галушко. Текст : непосредственный // Бюллетень Ставропольского научно-исследовательского института сельского хозяйства 2015. № 7 С. 252-258.
- 205. Цивенко, И.А. Чистые и занятые пары под озимые культуры / И.А. Цивенко. Москва : Колос, 1969. 136 с. Текст : непосредственный.
- 206. Цыбакова, Ю.Н. Биологическая активность темно-серой лесной почвы при различном уровне антропогенной нагрузки: специальность 06.01.01 «Общее земледелие, растениеводство»: автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук / ЦыбаковаЮлия Николаевна. Орел, 2004. 20 с. Текст: непосредственный.
- 207. Черкасов, Г.Н. Контроль засоренности посевов в адаптивно-ландшафтных системах земледелия / Г.Н. Черкасов, И.В. Дудкин. Текст : непосредственный // Земледелие. 2010. № 1. С. 43–45
- 208. Черкасов, Г.Н. Плодородие чернозема типичного при минимизации основной обработки / Г.Н. Черкасов, Е.В. Дубовик, Д.В. Дубовик. Текст: непосредственный // Земледелие. 2012. №4. С. 23-25.
- 209. Черкасов, Г.Н. Совершенствование севооборотов и структуры посевных площадей для хозяйств различной специализации Центрального Черноземья / Г.Н. Черкасов, А.С. Акименко. Текст: непосредственный // Земледелие. 2016. № 5. С. 8–11.

- 210. Чуданов, И.А. Почвозащитная обработка в севооборотах степного Заволжья / И.А. Чуданов. Текст: непосредственный // Минимализация обработки почвы. Москва: Колос, 1984. С. 237-244.
- 211. Чуманова, Н.Н. Влияние систем обработки на элементы плодородия почвы и урожайность пшеницы в условиях центральной лесостепи Кемеровской области / Н.Н. Чуманова, В.В. Гребенникова. Текст: непосредственный // Аграрный вестник Урала. 2008. № 4 (46). С. 56-58.
- 212. Чундерова, А.И. Влияние предшественников на активность ферментов на выщелоченном черноземе / А.И. Чундерова, Т.П. Зубец, В.И. Морозов. Текст: непосредственный // Роль микроорганизмов в повышении плодородия почв и урожая культурных растений: труды Всесоюзного научно-исследовательского института сельскохозяйственной микробиологии. Ленинград, 1978. Том 47. С.11 17.
- 213. Шайкин, С.В. Системы обработки почвы в звене севооборота с сидеральным паром в лесостепи Поволжья : специальность 06.01.01 «Общее земледелие, растениеводство» : диссертация на соискание ученой степени кандидата сельскохозяйственных наук / ШайкинСергей Васильевич. Ульяновск, 2002. 162 с. Текст : непосредственный.
- 214. Шмарко, Н.В. Роль парового поля в адаптивно-ландшафтной системе земледелия Верхневолжья / Н.В. Шрамко, Г.В. Вихорева. Текст: непосредственный // Владимирский земледелец. 2011. -№ 1. С. 24-25.
- 215. Шмарко, Н.В. Севооборот основа повышения плодородия дерново-подзолистых почв / Н.В. Шрамко, И.Г. Мельцаев, Г.В Вихорева. Текст: непосредственный// Земледелие. 2008. № 1. С. 20-21.
- 216. Шпанев, А.М. Сорные растения в посевах озимых зерновых культур на юго-востоке ЦЧЗ / А.М. Шпанев. Текст : непосредственный // Земледелие. 2009. №1. С. 42-45.
- 217. Шульмейстер, К.Г. Борьба с засухой и урожай / К.Г. Шульмейстер. изд. 2-е, перераб. И доп. Москва: Агропромиздат, 1988. 263 с. Текст: непосредственный.

- 218. Шульмейстер, К.Г. Избранные труды. В 2-х т. Т. 2 / К.Г. Шульмейстер. Волгоград, 1995. 480 с. Текст : непосредственный.
- 219. Шурупов, В.Г. Влияние способов основной обработки почвы и других факторов на засоренность в звене севооборота / В.Г. Шурупов, В.С. Полоус. Текст : непосредственный // Земледелие. 2011. № 1. С. 28-30.
- 220. Шурыгин, А.В. Технология возделывания озимой пшеницы / А.В. Шурыгин. Текст: непосредственный // Фермер. Поволжье. 2017. № 3 (56). С. 68–72.
- 221. Щербаков, А.П. Изменение свойств черноземных почв в агроланшафтах ЦЧЗ за последнее столетие / А.П. Щербаков, И.И. Васенев, В.Т. Лобков. Текст: непосредственный // Экологические основы повышения продуктивности и устойчивости агроланшафтных систем: сборник научных трудов.- Орел, 2001. С. 66-82. —
- 222. Экологическая роль малолетних сорных растений при применении систем ресурсосберегающей обработки почвы / С.В. Щукин, А.М. Труфанов, Р.Е. Казнин, Е.В. Чебыкина. Текст : непосредственный // Вестник АПК Верхневолжья. 2012. № 3 (19). С. 30-33.
- 223. Экономический анализ в АПК: учебник / П. В. Смекалов, С. В. Смолянинов, Л. Н. Косякова. Санкт-Петербург: Проспект Науки, 2018. 488 с. ISBN 978-5-903090-57-0. Текст: непосредственный.
- 224. Яговенко, Л.Л. Фитосанитарное состояние почвы в севооборотах / Л.Л Яговенко, Г.Л. Яговенко. Текст : непосредственный// Севооборот в современном земледелии : сборник докладов Международной научной конференции. Москва: Издательство МСХА, 2004. С. 192-196.
- 225. Altieri, N. Some agroecological and socioeconomic features of organic farming in California synergies in agriculture: A preliminary study / N. Altieri // Biol. Agr. Hortic. − 1983. № 1,2. − P.97-100.

- 226. Brenzinger, K.Organic residue amendments to modulate greenhouse gas emissions from agricultural soils / K. Brenzinger, S. Drost, G. Korthals // Frontiers in Microbiology. 2018. V. 9. Article number: 3035.
- 227. Bridges, E.M. Soil gaseous emissions and global climate change / E.M. Bridges, N.H. Batjes // Geography. 1996. V. 81(2). P. 155–169.
- 228. Cropping systems affect paddy soilorganic arbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China / T. Zhand, A. Chen, J.Liu, H. Liu, B.K.Lei, L.Zhai, D. Zhang, H. Wang // Science of the total environment. 2017. V. 609. P. 1640-1649.
- 229. Diseases and insect pests area monitoring for winter wheat based on hj-ccd imagery / L. Feng, X. Chen, L. Tian, X. Cai, G. Su, W. Wu //NongyeGongchengXuebao. 2010. T. 26. № 7. P. 213-219.
- 230. Effect of tillage and crop management on runoff, soil erosion and organic carbon loss. / M. Chowaniak, T. Glab, K. Klima, M. Niemiec, T. Zaleski, D. Zuzek // Soil Use and Management. 2020. Т. 36, Вып: 4. Р.581-593.
- 231. Efficacy of Brassica sorghum and sunflower aqueous extracts to control wheat weeds under rainfed conditions of pothwar / F.K. Awan, M. Rasheed, M. Ashraf, M.Y. Khurshid // Pakistan.Journal of Animal and Plant Sciences. 2012. Volume: 22, Issue: 3. P. 715-721.
- 232. Efficient Solar-Driven Nitrogen Fixation over Carbon-Tungstic-Acid Hybrids / X. Li, W. Wang, D. Jiang, S. Sun, L. Zhang, X. Sun // Chemistry. 2016. Sep 19; 22(39). P.13819-13822.
- 233. Fernandez-Quintanilla C., Barroso J.Impact of climatechange of weed management systems / C. Fernandez-Quintanilla, J. Barroso // InformacionTecnicaEconomicaAgraria. 2020. № 116 (5). P. 396-404.
- 234. Global meta-analysis of wood decomposition rates: a role for trait variation among treespecies? / J.T Weedon.,W.K. Cornwell, J.H Cornelissen, A.E. Zanne // Ecology Letters. 2009. V. 12. P.45-56.

- 235. Influence of traditional technology and direct sowing the winter wheat on agrophysical factors of fertility the dark chestnut soils / I.A. Volters, O.I. Vlasova, V.M. Perederieva, L.V. Trubacheva, L.V. Tuturzhans // Research Journal of Pharmaceutical, Biological and Chemical Sciences. − 2018. − V. 9. № 4. − P. 718–726.
- 236. Rapp D.Assessing climate change: Temperatures, solar radiation and heat balance: Third edition. Springer International Publishing,2014. 816 p.
- 237. Reducing danger of heavy metals accumulation in winterwheat grain which is grown after leguminous perennial precursor / S.F. Razanov, O.P. Tkachuk, O.M. Bakhmat, A.M. Razanova // Ukrainian Journal of Ecolog. − 2020. –V. 10, № 1. P. 254-260.
- 238. Selection of winter wheat predecessors in crop rotations of the Volga region forest steppe / A.L. Toigildin, V.I. Morozov, M.I. Podsevalov, Y.M. Isaev, I.A. Toigildina //Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. S. 7 (6). P.2203-2209.
- 239. Senft, D Weed control on the central plainsAgricultural Research/D. Senft 1997. T. 45. № 5. P. 19.
- 240. Soil microbiome: a key player for conservation of soil health under changing climate / A. Dubey, M.A. Malla, F. Khan, K. Chowdhary, S. Yadav, A. Kumar, S. Sharma, P.K. Khare, M.L. Khan//Biodiversity and Conservation. 2019. − V. 28, №8-9. P. 2405-2429.
- 241. The effectiveness of direct sowing technology in the cultivation of spring wheat in the conditions of the forest-steppe zone of the Volga region / A.L. Toigildin, V.I. Morozov, M.I. Podsevalov, V.V. Syromyatnikov // International Scientific-Practical Conference "Agriculture and Food Security: Technology, Innovation, Markets, Human Resources". 2020. P. 00129.
- 242. Utilizing the allelopathic potential of Brassica species for sustainable crop production: a review. Journal of plant growth regulation / S. Rehman,

- B. Shahzad, A.A. Bajwa, S. Hussain, A. Rehman, S.A. Cheema, T. Abbas. A. Ali, L. Shah, S. Adkins, Pj.T. Li. 2019. V 38, №1. P. 343-356.
- 243. Winter wheat fertilized with biogas residue and mining waste: yielding and the quality of grain / K. Różyło, E. Pałys, U. Gawlik-Dziki, M. Świeca, R. Różyło // Journal of the Science of Food and Agriculture. 2016. P. 3454-3461.
- 244. Yield gain due to fungicide application in varieties of winter wheat (triticumaestivum) resistant and susceptible to leaf rust / A. Morgounov, B. Akin, L. Demir, S. Orhan, I. Özseven, M. Keser, A. Kokhmetova, S. Martynov, F. Özdemir, Z. Sapakhova, M. Yessimbekova // Crop and Pasture Science. 2015. T. 66, № 7. P. 649-659.
- 245. Zekalo, M. The organic production of cereals in the EU countries and the profitability of winter wheat and winter rye in organic farms in Poland / M. Zekalo // Scientific Papers. Series Management, Economic Engineering in Agriculture and Rural Development. 2018. Vol. 18, № 2. P. 493–498.

Приложения

Приложение 1 Температура воздуха в годы проведения исследований, 0 С (метеопоста «Октябрьский»)

Месяц	Температура воздуха, ⁰ С								
	Декады	Сред.за 1975–2020г.	2018	2019	2020	2021			
Январь	1	-10,2	-5,7	-10,8	-3,2	-7,6			
1	2	-8,2	-11,4	-7,3	-1,0	-18,7			
-	3	-8,3	-12,4	-14,3	-4,4	-5,8			
-	Сред	-8,9	-9,8	-10,8	-2,9	-10,7			
Февраль	1	-11,3	-9,1	-9,2	-5,9	-11,4			
1	2	-10,2	-12,5	-6,4	-4,8	-16,6			
-	3	- 7,9	-17,0	- 5,9	-0,8	- 15,2			
-	Сред	-9,8	-12,9	-7,2	-3,8	-14,4			
Март	1	-5,3	-13,0	-3,5	1,4	-12,2			
1	2	-4,1	-11,2	-1,5	3,8	-7,3			
-	3	-1,4	-4,2	0,7	2,2	-1,1			
-	Сред	-3,6	-9,5	-1,9	2,5	-6,9			
Апрель	1	2,3	3,0	3,1	4,7	3,8			
Γ	2	6,1	5,6	4,7	5,9	9,6			
-	3	9,0	6,3	6,0	8,0	7,1			
-	Сред	5,8	5,0	4,6	6,2	6,8			
Май	1	12,5	13,8	15,6	14,2	14,7			
	2	13,8	17,4	16,7	11,1	22,2			
-	3	15,8	14,4	17,5	14,9	20,0			
	Сред	14,0	15,2	16,6	13,4	18,9			
Июнь	<u>гред</u> 1	16,8	13,2	19,7	16,6	18,3			
Июнь	2	18,8	16,3	19,1	19,1	21,3			
	3	20,0	23,3	20,0	17,0	24,4			
-	Сред	18,5	17,6	19,6	17,6	21,3			
Июль	1	19,8	23,6	18,7	24,0	22,7			
	2	20,6	22,4	20,0	23,0	19,0			
Июль	3	20,5	22,2	19,0	20,6	22,5			
-	Сред	20,3	22,7	19,2	22,5	21,4			
Август	1	19,5	21,7	15,2	19,9	24,0			
1121 9 01	2	18,5	20,2	19,0	15,2	24,5			
-	3	16,9	18,5	15,6	17,9	20,8			
-	Сред	18,3	20,1	16,6	17,7	23,1			
Сен-	1	14,9	17,2	14,2	16,8	12,7			
тябрь	2	12,5	14,7	13,0	12,8	10,8			
	3	10,3	11,9	6,2	10,7	8,3			
-	Сред	12,5	14,6	11,1	13,4	10,6			
Октябрь	<u>еред</u> 1	9,4	9,1	10,8	9,9	-			
2nopb	2	3,4	8,3	7,9	9,2	-			
-	3	0,7	4,0	7,3	3,0	_			
-	Сред	4,5	7,1	8,7	7,4	_			
Ноябрь	<u>сред</u> 1	0,7	1,8	2,1	3,3	_			
Полорь	2	0,2	- 5,0	0,1	-5,7	-			
-	3	0,2	- 5,8	-7,3	-3,9	_			

Продолжение приложения 1

Декабрь	1	-3,6	-6,4	-2,1	-13,5	-
	2	-4,8	- 7,3	-3,3	- 12,3	-
	3	- 5,4	- 10,7	-7,4	-8,5	-
	Сред	-4,6	-8,1	-4,3	-11,4	-

Приложение 2 Сумма осадков в годы проведения исследований, мм. (метеопоста «Октябрьский»)

Месяц	Сумма осадков, мм									
	Декады	Сред.за 1975–2020	2018	2019	2020	2021				
Январь	1	7,2	5,3	6,4	1,0	0,0				
•	2	10,3	0,2	0	7,4	0,0				
_	3	13,5	4,5	2,6	3,6	12,0				
	Сумма	31,0	10,0	9,0	12	12,0				
Февраль	1	8,4	0	0	11,4	12,4				
1	2	9,7	0	9,4	6,6	0,4				
	3	6,9	6,0	1,6	13,2	4,2				
	Сумма	25,0	6,0	10,6	31,2	17,0				
Март	1	7,6	0	8,2	7,8	0,6				
1	2	5,3	0,2	10,4	6,8	0,6				
	3	10,1	7,6	35,0	2,8	2,8				
	Сумма	23,0	7,8	53,6	17,4	3,4				
Апрель	1	10,5	13,2	6,0	0,2	19,2				
r	2	11,6	9,4	0	15,2	1,0				
	3	11,3	54,8	6,0	22,8	14,4				
	Сумма	33,3	77,4	12	38,2	34,6				
Май	1	9,8	4,6	0	5,6	20,0				
IVIUN	2	13,6	3,0	4,0	26,0	3,0				
-	3	15,2	10,6	11,0	15,0	9,6				
	Сумма	38,6	18,2	15,0	46,6	32,6				
Июнь	1	18,3	10,6	9,0	54,6	0				
	2	24,5	4,0	0,8	10,8	8,6				
	3	23,4	0	34,4	18,6	22,4				
	Сумма	66,2	14,6	44,2	84,0	31,0				
Июль	1	26,7	9,6	13,0	6,0	10,6				
THOMB	2	18,7	36,0	35,6	5,0	30,0				
Июль	3	21,5	0,2	23,4	5,0	32,8				
	Сумма	67,0	45,8	72,0	16,2	73,4				
Август	<u>Сумма</u> 1	18,2	12,8	87,2	21,2	6,8				
ABIYCI	2	16,6	3,2	1,8	33,8	1,2				
	3	17,5	14,0	5,0	5,0	3,2				
			30,0	94,0	60,0	11,2				
Corr	Сумма	52,4	0	0						
Сен- тябрь	2	18,9			1,4	34,4				
тяорь	3	20,2	25,2	36,0	13,6	2,6				
		19,4	13,0	22,4	2,8					
Oxer a 5	Сумма	58,5	38,2	58,4	17,8	77,0				
Октябрь	$\frac{1}{2}$	15,1	28,4	15,4	0,2	-				
<u> </u>	3	12,6	4,4	41,6	4,6	-				
-		12,3	41,8	4,8	19,6	-				
TT ~	Сумма	40,0	74,6	61,8	24,4	-				
Ноябрь	1	4,7	9,2	4,0	4,6	-				
<u> </u>	2	11,6	0	10,4	0	-				
	3	17,7	0	0	0,8	-				
	Сумма	34,0	9,2	14,4	5,4	-				

Продолжение приложения 2

						L .
Декабрь	1	5,6	0,3	4,4	0	-
	2	9,8	6,7	14,2	0,6	-
	3	16,6	5,0	0	8,0	-
	Сумма	32,0	12,0	18,6	8,6	-

Приложение 3

Системы основной обработки почвы в экспериментальных севооборотах

Nº	Вари-	I севооборот	II севооборот	III севооборот	IV севооборот					
ПО-	ант об-									
ЛЯ	работ-									
	ки									
1	B 1	Пар чистый	Лен масличный	Горчица белая	Рапс яровой					
		Дискование БДМ-4х4П на 10-12см +								
		рыхление плугами со стойками Си-	Дискование БДМ-4х4П на 10	—12 см + рыхление плугами со c	стойками СибИМЭ на 20–22 см.					
		бИМЭ на 20–22 см.								
	B2	Пар чистый	Лен масличный	Горчица белая	Рапс яровой					
		Дискование БДМ-4х4П на 10-12см +		_	_					
		культивация КПИР-3,6 на 12-14 см	Дискование БДМ-42	х4П на 10–12см + культивация І	КПИР-3,6 на 12-14 см					
2	B1	Озимая пшеница	Озимая пшеница	Озимая пшеница	Озимая пшеница					
		Весенне-летний уход за чистым па-								
		ром. Культивация КПИР-3,6, посев	Дискование БДМ-4х4П двухк	ратное на 8–10; 10–12 см. предп	осевная культивация КПИР–3,6					
				на 6-8 см, посев.	,					
	B2	Озимая пшеница	Озимая пшеница	Озимая пшеница	Озимая пшеница					
		Весенне-летний уход за чистым па-	Дискование БДМ-4х4П двухк	ратное на 8-10; 10-12 см. предп	осевная культивация КПИР–3,6					
		ром. Культивация КПИР–3,6, посев	-	на 6-8 см, посев.						

Приложение 4 Система удобрений в экспериментальных севооборотах

Культура	Под предпосевную	При севе	Подкормка
	культивацию		
Масличные (лен,	100 кг/га аммиачная	100 кг/га диаммо-	_
горчица, рапс)	селитра	фоска 10:26:26	
Озимая пшеница	_	100 кг/га диаммо-	200 кг/га аммиач-
		фоска 10:26:26	ная селитра
Бобовые (соя, го-	_	100 кг/га диаммо-	_
рох, люпин, нут)		фоска 10:26:26	
Яровая пшеница	100 кг/га аммиачная	100 кг/га диаммо-	_
	селитра	фоска 10:26:26	
Многолетние травы	_	_	100 кг/га аммиач-
			ная селитра

Система защиты растений в экспериментальных севооборотах

		а защиты растении	в экспериментальных севооборотах
No	Культура	1 уровень	2 уровень
поля		Защита растений	Защита растений от сорняков, болезней и вреди-
		от сорняков	телей
		(Минимальная	(Адаптивно-интегрированная защита растений)
		защита растений)	(* 27, whith some the proposition of the control of
		защита растении)	
1	Чистый	Культивация па-	Культивация + гербицид (глифосат 360 г/л; 3
1	пар	ров	л/га)
	Лен	1 обработка: гер-	1 обработка: Гербицид Лорнет, ВР – 0,3 л/га
	Горчица	бицид Лорнет,	(Клопиралид, 300 г/л, 0,1–0,3 л/га) + биофунги-
	-	ВР – 0,3 л/га	цид БисолбиСан 1 л/га + инсектицид Фастак 0,15
	Рапс	· ·	
		(клопиралид 300	л/га;
		г/л)	2 обработка: фунгицид Пиктор 0,5 л/га, инсек-
		1 ~ ~	тицид Би 58 Новый 1 л/га
2	Озимая	1 обработка: гер-	Обработка семян: Иншур Перформ 0,5 л/т +
	пшеница	бицид Прима-	биофунгицид БисолбиСан 1 л/т
		донна, ВР – 0,6	1 обработка: Гербицид Примадонна, ВР – 0,6
		л/га (клопиралид	л/га + биофунгицид БисолбиСан 1 л/га + инсек-
		300 г/л)	тициды Фастак 0,15 л/га;
			2 обработка: фунгицид Рекс Плюс 0,8 л/га, ин-
			сектицид Би 58 Новый 1 л/га
3	Соя	1 обработка: гер-	Обрабока семян; Делит Про 0,5 л/т + биофунги-
	Горох	бицид Пивот 0,5	цид БисолбиСан 1 л/т
	Люпин	л/га	1 обработка: Пивот 0,5 л/га биофунгицид Бисол-
			биСан 1 л/га + инсектицид Фастак 0,15 л/га;
			2 обработка: фунгицид Оптимо 0,5 л/га, инсек-
			тицид Фастак 0,15 л/га
	Нут	1 обработка: гер-	Обработка семян; Делит Про 0,5 л/т + биофун-
	-	бицид почвен-	гицид БисолбиСан 1 л/т
		ный Мерлин	1 обработка: Мерлин Флекс 0,2 л/га
		Флекс 0,2 л/га	2 обработка: фунгицид Оптимо 0,5 л/га, инсек-
		,	тицид Фастак 0,15 л/га
4	Яровая	1 обработка: гер-	Обработка семян: Иншур Перформ 0,5 л/т +
	пшеница	бицид Прима-	биофунгицид БисолбиСан 1 л/т
		донна, ВР – 0,6	1 обработка: Гербицид Примадонна, ВР – 0,6
		л/га (клопиралид	л/га + биофунгицид БисолбиСан 1 л/га + инсек-
		300 г/л)	тициды Фастак 0,15 л/га;
		500 1/51)	2 обработка: фунгицид Рекс Плюс 0,8 л/га, ин-
			сектицид Би 58 Новый 1 л/га
5	Многолет-	1 обработка: Ба-	1 обработка: Базагран 2 л/га + БисолбиСан 1 л/га
	ние травы	загран 2 л/га	1 oopaootka. basai pan 2 1/1 a birononean 1 11/1 a
6	Яровая	1 обработка: гер-	Обработка семян: Иншур Перформ 0,5 л/т +
			биофунгицид БисолбиСан 1 л/т
	пшеница	бицид Прима-	± 7
		донна, ВР – 0,6	1 обработка: Гербицид Примадонна, ВР – 0,6
		л/га (клопиралид	л/га + биофунгицид БисолбиСан 1 л/га + инсек-
		300 г/л)	тициды Фастак 0,15 л/га;
			2 обработка: фунгицид Рекс Плюс 0,8 л/га, ин-
			сектицид Би 58 Новый 1 л/га

Приложение 6 Влияние предшественников и обработки почвы на плотность сложения пахотного слоя озимой пшеницы, г/см 3 . в 2019 году

Факт	горы	Слой,		Возобнов-	
Предшест-	Обработка	см	Посев	ление – ве-	Уборка
венник	почвы	CM		гетации	
		0–10	1,14	1,26	1,30
	B1	10–20	1,19	1,27	1,33
Чистый пар		20–30	1,26	1,33	1,36
		0-30	1,20	1,29	1,33
		0–10	1,12	1,29	1,32
	B2	10–20	1,20	1,29	1,32
		20–30	1,26	1,31	1,38
		0-30	1,19	1,34	1,34
		0–10	1,15	1,31	1,32
	B1	10–20	1,20	1,28	1,34
		20–30	1,26	1,30	1,39
Лён мас-		0-30	1,20	1,34	1,35
личный		0–10	1,16	1,31	1,33
	B2	10–20	1,22	1,29	1,36
		20–30	1,27	1,31	1,39
		0–30	1,22	1,34	1,36
		0–10	1,14	1,31	1,34
	B1	10–20	1,20	1,27	1,33
Горчица		20–30	1,28	1,28	1,36
белая		0–30	1,21	1,33	1,34
		0–10	1,15	1,29	1,34
	B2	10–20	1,22	1,30	1,36
		20–30	1,28	1,32	1,39
		0–30	1,22	1,34	1,37
		0–10	1,14	1,32	1,31
	B1	10–20	1,20	1,27	1,31
Рапс яровой		20–30	1,27	1,29	1,37
		0–30	1,20	1,31	1,34
		0–10	1,15	1,29	1,35
	B2	10–20	1,21	1,31	1,34
		20–30	1,28	1,33	1,39
		0-30	1,21	1,31	1,35

Приложение 7 Влияние предшественников и обработки почвы на плотность сложения почвы под озимой пшеницей, г/см 3 . в 2020 году

Факт	горы	Слой,		Возобнов-		
Предшест-	Обработка	см	Посев	ление – ве-	Уборка	
венник	почвы	CM		гетации		
		0–10	1,08	1,18	1,25	
	B1	10–20	1,13	1,22	1,31	
Чистый пар		20–30	1,18	1,29	1,31	
		0-30	1,13	1,23	1,29	
		0-10	1,07	1,22	1,27	
	B2	10–20	1,17	1,24	1,31	
		20–30	1,25	1,30	1,32	
		0-30	1,17	1,25	1,27	
		0–10	1,11	1,21	1,25	
	B1	10–20	1,19	1,26	1,29	
		20–30	1,23	1,31	1,31	
Лён мас-		0-30	1,18	1,26	1,29	
личный		0–10	1,13	1,25	1,27	
	B2	10–20	1,21	1,27	1,32	
		20–30	1,23	1,32	1,33	
		0–30	1,13	1,29	1,30	
		0–10	1,11	1,26	1,27	
	B1	10–20	1,18	1,27	1,30	
Горчица		20–30	1,23	1,32	1,31	
белая		0–30	1,18	1,27	1,29	
		0–10	1,23	1,26	1,28	
	B2	10–20	1,17	1,28	1,31	
		20–30	1,12	1,33	1,32	
		0–30	1,18	1,29	1,29	
		0–10	1,24	1,22	1,26	
	B1	10–20	1,19	1,25	1,29	
Рапс яровой		20–30	1,13	1,31	1,33	
		0–30	1,17	1,26	1,29	
		0–10	1,23	1,24	1,28	
	B2	10–20	1,19	1,26	1,32	
		20–30	1,13	1,32	1,33	
		0-30	1,20	1,27	1,28	

Приложение 8 Влияние предшественников и обработки почвы на плотность сложения почвы под озимой пшеницей, г/см 3 . в 2021 году

Факт	горы	Слой,		Возобнов-	
Предшест-	Обработка	см	Посев	ление – ве-	Уборка
венник	почвы	CM		гетации	
		0–10	1,11	1,20	1,28
	B1	10–20	1,16	1,23	1,30
Чистый пар		20–30	1,21	1,27	1,34
		0-30	1,15	1,25	1,31
		0–10	1,11	1,25	1,29
	B2	10–20	1,15	1,27	1,33
		20–30	1,24	1,33	1,37
		0-30	1,14	1,27	1,32
		0–10	1,13	1,26	1,29
	B1	10–20	1,16	1,27	1,34
		20–30	1,23	1,31	1,37
Лён мас-		0–30	1,17	1,28	1,33
личный		0–10	1,14	1,25	1,28
	B2	10–20	1,17	1,28	1,32
		20–30	1,27	1,31	1,39
		0–30	1,20	1,28	1,33
		0–10	1,12	1,26	1,31
	B1	10–20	1,21	1,28	1,32
Горчица		20–30	1,28	1,33	1,36
белая		0-30	1,20	1,28	1,31
		0–10	1,13	1,27	1,29
	B2	10–20	1,21	1,28	1,32
		20–30	1,28	1,31	1,37
		0–30	1,20	1,29	1,33
		0–10	1,15	1,27	1,29
	B1	10–20	1,16	1,28	1,31
Рапс яровой		20–30	1,21	1,33	1,34
		0–30	1,17	1,29	1,30
		0–10	1,13	1,29	1,30
	B2	10–20	1,18	1,26	1,32
		20–30	1,25	1,32	1,37
		0-30	1,16	1,29	1,30

Приложение 9 Расход влаги в посевах озимой пшеницы в севооборотах за 2019

Период вегетации	Предшественники	Запасы влаги в слое		Убыло,	Осадки,	Расход	влаги за	Из запасов		За счет осадков	
		0-1,0	M, MM	прибыло,	прибыло, мм		период, мм		почвы		
		Начало	Конец	MM		MM	%	MM	%	MM	%
		периода	периода								
Возобновление ве-	Пар чистый	185	125	60	15,2	75,2	29,3	60	79,8	15,2	20,2
гетации– колоше-	Лен масличный	175	117	58	15,2	73,2	29,5	58	79,2	15,2	20,8
ние	Горчица белая	175	117	58	15,2	73,2	29,5	58	79,2	15,2	20,8
	Рапс яровой	175	118	57	15,2	72,2	28,9	57	78,9	15,2	21,1
	Пар чистый	125	60	65	116,2	181,2	70,7	65	35,9	116,2	64,1
Колошение –	Лен масличный	117	58	59	116,2	175,2	70,5	59	33,7	116,2	66,3
уборка	Горчица белая	117	58	59	116,2	175,2	70,5	59	33,7	116,2	66,3
	Рапс яровой	118	57	61	116,2	177,2	71,1	61	34,4	116,2	65,6
	Пар чистый	185	60	125	131,4	256,4	100	125	48,8	131,4	51,2
Возобновление ве-	Лен масличный	175	58	117	131,4	248,4	100	117	47,1	131,4	52,9
гетации– уборка	Горчица белая	175	58	117	131,4	248,4	100	117	47,1	131,4	52,9
	Рапс яровой	175	57	118	131,4	249,4	100	118	47,3	131,4	52,7

Приложение 10 Расход влаги в посевах озимой пшеницы в севооборотах за 2020 год

Период вегетации	Предшественники	Запасы влаги в слое		Убыло,	Осадки,	Расход	влаги за	Из запасов почвы		За счет осадков	
		0-1,0	M, MM	прибыло,	MM	период, мм					
		Начало	Конец	MM		MM	%	MM	%	MM	%
		периода	периода								
Возобновление ве-	Пар чистый	194	159	35	84,8	119,8	34,8	35	29,2	84,8	70,8
гетации– колоше-	Лен масличный	180	151	29	84,8	113,8	33,9	29	25,5	84,8	74,5
ние	Горчица белая	182	150	32	84,8	116,8	34,9	32	27,4	84,8	72,6
	Рапс яровой	181	158	23	84,8	107,8	31,4	23	21,3	84,8	78,7
	Пар чистый	159	35	124	100,2	224,2	65,2	124	55,3	100,2	44,7
Колошение –	Лен масличный	151	29	122	100,2	222,2	66,1	122	54,9	100,2	45,1
уборка	Горчица белая	150	32	118	100,2	218,2	65,1	118	54,1	100,2	45,9
	Рапс яровой	158	23	135	100,2	235,2	68,6	135	57,4	100,2	42,6
	Пар чистый	194	35	159	185	344	100	159	46,2	185	53,8
Возобновление ве-	Лен масличный	180	29	151	185	336	100	151	44,9	185	55,1
гетации– уборка	Горчица белая	182	32	150	185	335	100	150	44,8	185	55,2
	Рапс яровой	181	23	158	185	343	100	158	46,1	185	53,9

Приложение 11 Расход влаги в посевах озимой пшеницы в севооборотах за 2021 год

Период вегетации	Предшественники	Запасы вл	аги в слое	Убыло,	Осадки,	Расход	влаги за	Из за	пасов	За счет осадков	
		0-1,0	M, MM	прибыло,	MM	период, мм		поч	НВЫ		
		Начало	Конец	MM		MM	%	MM	%	MM	%
		периода	периода								
Возобновление ве-	Пар чистый	183	108	75	67,2	142,2	50,9	75	52,7	67,2	47,3
гетации– колоше-	Лен масличный	173	101	72	67,2	139,2	51,1	72	51,7	67,2	48,3
ние	Горчица белая	173	99	74	67,2	141,2	52,2	74	52,4	67,2	47,6
inne	Рапс яровой	172	101	71	67,2	138,2	50,7	71	51,4	67,2	48,6
	Пар чистый	108	75	33	104,4	137,4	49,1	33	24,0	104,4	76,0
Колошение –	Лен масличный	101	72	29	104,4	133,4	48,9	29	21,7	104,4	78,3
уборка	Горчица белая	99	74	25	104,4	129,4	47,8	25	19,3	104,4	80,7
	Рапс яровой	101	71	30	104,4	134,4	49,3	30	22,3	104,4	77,7
	Пар чистый	183	75	108	171,6	279,6	100	108	38,6	171,6	61,4
Возобновление ве-	Лен масличный	173	72	101	171,6	272,6	100	101	37,1	171,6	62,9
гетации– уборка	Горчица белая	173	74	99	171,6	270,6	100	99	36,6	171,6	63,4
	Рапс яровой	172	71	101	171,6	272,6	100	101	37,1	171,6	62,9

Приложение 12 Расход влаги в посевах озимой пшеницы в севооборотах (в среднем за 2019 – 2021 гг.)

Период вегетации	Предшественники	Запасы вл	аги в слое	Убыло,	Осадки,	Расход	влаги за	Из за	пасов	За счет осадков	
		0-1,0	M, MM	прибыло,	MM	период, мм		поч	НВЫ		
		Начало	Конец	MM		MM	%	MM	%	MM	%
		периода	периода								
Возобновление ве-	Пар чистый	184	127	57	56	113	39,0	57	50,4	56	49,6
гетации– колоше-	Лен масличный	176	123	53	56	109	38,1	53	48,6	56	51,4
ние	Горчица белая	176	121	55	56	111	39,1	55	49,5	56	50,5
	Рапс яровой	176	126	50	56	106	36,7	50	47,2	56	52,8
	Пар чистый	127	57	70	107	177	61,0	70	39,5	107	60,5
Колошение –	Лен масличный	123	53	70	107	177	61,9	70	39,5	107	60,5
уборка	Горчица белая	121	55	66	107	173	60,9	66	38,2	107	61,8
	Рапс яровой	126	50	76	107	183	63,3	76	41,5	107	58,5
	Пар чистый	184	57	127	163	290	100	127	43,8	163	56,2
Возобновление ве-	Лен масличный	176	53	123	163	286	100	123	43,0	163	57,0
гетации– уборка	Горчица белая	176	55	121	163	284	100	121	42,6	163	57,4
	Рапс яровой	176	50	126	163	289	100	126	43,6	163	56,4

Приложение 13 Эвапотранспирация и коэффициент водопотребления озимой пшеницы после различных паров за 2019 год

Показатели	Пар чистый	Лен мас- личный	Горчица белая	Рапс яро- вой
Урожай сухой надземной биомассы, т/га	7,1	5,7	5,4	5,8
Урожай зерна, т/га	4,0	3,2	3,0	3,2
Запасы продуктивной воды перед возобновлением вегетации, мм	185	175	175	175
Осадки за период возобновление вегетации – уборка, мм	131,4	131,4	131,4	131,4
Запасы продуктивной влаги в слое почвы 1 м перед уборкой, мм	60	58	58	57
Общий расход продуктивной влаги, мм	256,4	248,4	248,4	249,4
Коэффициент водопотребления, ${\rm m^3/r}^*$	361 649	435 784	460 828	433 779

Приложение 14 Эвапотранспирация и коэффициент водопотребления озимой пшеницы после различных паров за 2020 год

Показатели	Пар чистый	Лен мас-	Горчица	Рапс яро-
		личный	белая	вой
Урожай сухой надземной биомассы, т/га	13,1	9,9	11,4	10,3
Урожай зерна, т/га	7,3	5,5	6,3	5,7
Запасы продуктивной влаги перед возобновлением вегетации, мм	194	180	182	181
Осадки за период возобновление вегетации – уборка, мм	185	185	185	185
Запасы продуктивной влаги в слое почвы 1 м перед уборкой, мм	35	29	32	23
Общий расход продуктивной влаги, мм	344	336	335	343
Коэффициент водопотребления, ${\rm M}^3/{\rm T}^*$	<u>262</u> 471	338 609	<u>294</u> 528	333 599

Приложение 15 Эвапотранспирация и коэффициент водопотребления озимой пшеницы после различных паров за 2021

Показатели	Пар чис- тый	Лен мас- личный	Горчица белая	Рапс яро- вой
Урожай сухой надземной биомас- сы, т/га	7,02	4,28	4,54	4,36
Урожай зерна, т/га	3,9	2,38	2,52	2,42
Запасы продуктивной воды перед возобновлением вегетации, мм	183	173	173	172
Осадки за период возобновление вегетации – уборка, мм	171,6	171,6	171,6	171,6
Запасы продуктивной влаги в слое почвы 1 м перед уборкой, мм	75	72	74	71
Общий расход продуктивной влаги, мм	279,6	272,6	270,6	272,6
Коэффициент водопотребления, m^3/T^*	398 717	<u>636</u> 1145	<u>597</u> 1074	<u>626</u> 1126

Приложение 16 Баланс гумуса в звеньях севооборота с чистым паром

№ поля	Культура	Урожай– ность,	Вынос урожа		Минера- лизация	Macc	а, т/га	Новоо	бразование і	гумуса	Баланс, кг/га
		ц/га	на 1 ц	кг/га	гумуса,						(+/-)
					кг/га	ПКО	Соломы	Из ПКО	Из соломы	Всего,	
										кг/га	
Комбинированная обработка с применением минимальной защиты растений											
1	Чистый пар	_	_	_	2000	_	_	_	_	_	-2000
2	Озимая пшеница	50,5	3,5	176,8	1768	4,9	7,6	421	854	1276	-492
	Минерализация гумуса на 1га				1884			211	427	638	-1246
Комбинированная обработка с				примене	нием адапт	гивно — и	нтегрирог	ванной за	щиты		
1	Чистый пар	_	_	_	2000	_	_	_	_	_	-2000
2	Озимая пшеница	54,2	3,5	189,7	1897	5,3	8,2	453	918	1371	-526
	Минерализация гумуса на 1	га			1948,5			227	459	686	-1263
	Ми	нимальная об	бработка (с примен	иением мин	имальної	й защиты	растений			
1	Чистый пар	_	_	_	2000	_	_	_	_		-2000
2	Озимая пшеница	48,8	3,5	170,8	1708	4,7	7,3	407	825	1232	-476
	Минерализация гумуса на	га			1854			204	413	616	-1238
	Ми	нимальная с	бработка	с примен	нением адаг	тивно –	интегриро	ованной з	ащиты		
1	Чистый пар	_	_	_	2000	_	_	_	_	_	-2000
2	Озимая пшеница	52,8	3,5	184,8	1848	5,1	7,9	441	894	1335	-513
	Минерализация гумуса на 1га				1924			221	447	668	-1257

Баланс гумуса в звеньях севооборота со льном масличным

Приложение 17

№ поля Культура Урожай-Вынос азота с Минера-Масса, т/га Новообразование гумуса Баланс, кг/га лизация ность, урожаем, кг (+/-)ш/га на 1 ц кг/га гумуса, Соломы Из ПКО Из соломы кг/га ПКО Всего. кг/га Комбинированная обработка с применением минимальной защиты растений Лён масличный 12,4 2,9 36.0 360 1,3 0,9 110 102 213 -147 2 36,9 3,5 129,2 1292 3,5 5,5 303 622 925 -367 Озимая пшеница 826 206.5 362 569 Минерализация гумуса на 1га -257 Комбинированная обработка с применением адаптивно – интегрированной защиты 13,3 2,9 38,6 386 1,0 228 -158 1 Лён масличный 1,4 118 110 2 Озимая піпенипа 40,4 3,5 141,4 1414 3.9 6.1 334 682 1015 -399 Минерализация гумуса на 1га 900 226 396 621.5 -278 Минимальная обработка с применением минимальной защиты растений 10,8 313 89 Лён масличный 2,9 31,3 1,1 0,8 96 186 -128 2 34,8 3,5 121,8 1218 3.3 5,2 285 871 -347 Озимая пшеница 586 Минерализация гумуса на 1га 766 191 338 529 -237 Минимальная обработка с применением адаптивно – интегрированной защиты 201 Лён масличный 2,9 339 1,2 0.9 97 -139 11.7 33,9 104 2 38,5 3,5 134,8 1348 3.7 5,8 317 649 966 -381 Озимая пшеница Минерализация гумуса на 1га 844 373 211 584 -260

Баланс гумуса в звеньях севооборота с горчицей белой

Приложение 18

№ поля Культура Урожай-Вынос азота с Минера-Масса, т/га Новообразование гумуса Баланс, кг/га лизация ность, урожаем, кг (+/-)ш/га на 1 ц гумуса, кг/га кг/га Соломы Из ПКО Из соломы ПКО Всего, кг/га Комбинированная обработка с применением минимальной защиты растений Горчица белая 12,6 5.7 71,8 718 1,4 121 238 -481 1.1 116 2 39.7 3,5 139,0 1390 3,8 6,0 328 670 997 -392 Озимая пшеница 1054 Минерализация гумуса на 1га 222 395.5 617,5 -436 Комбинированная обработка с применением адаптивно – интегрированной защиты Горчица белая 775 1,5 257 -519 13.6 5,7 77,5 1,2 126 131 1 2 Озимая пшеница 43,4 3,5 151,9 1519 4,2 6,5 360 733 1093 -426 1147 243 Минерализация гумуса на 1га 432 675 -473 Минимальная обработка с применением минимальной защиты растений 101 Горчица белая 10,5 5,7 59,9 599 0,9 97 198 -400 1 1,1 2 Озимая піпенипа 37,2 3,5 130,2 1302 3.6 5,6 306 627 933 -369 951 202 364 -385 Минерализация гумуса на 1га 566 Минимальная обработка с применением адаптивно – интегрированной защиты Горчица белая 10,9 621 1,2 0,9 105 206 -416 5,7 62,1 101 1439 2 Озимая пшеница 41,1 3,5 143,9 4,0 6,2 340 694 1033 -405 1030 221 400 620 -410 Минерализация гумуса на 1га

Баланс гумуса в звеньях севооборота с рапсом яровым

Приложение 19

Баланс гумуса в звеньях севооборота с рапсом яровым № поля Культура Урожай-Вынос азота с Минера-Масса, т/га Новообразование гумуса Баланс, кг/га лизация ность, урожаем, кг (+/-)на 1 п ц/га гумуса, кг/га кг/га ПКО Соломы Из ПКО Из соломы Всего, кг/га Комбинированная обработка с применением минимальной защиты растений Рапс яровой 695 13,9 5 69,5 1.1 1,4 97 156 253 -442 1 3,5 2 Озимая пшеница 37.8 132,3 1323 3,6 5.7 311 637 948 -375 1009 204 Минерализация гумуса на 1га 396,5 600,5 -408 Комбинированная обработка с применением адаптивно – интегрированной защиты 15,2 76,0 760 278 -482 Рапс яровой 5 1,2 1,5 106 171 2 Озимая ппленипа 41,5 3,5 145,3 1452,5 4.0 6.2 343 700 1044 -409 1106 225 436 661 -446 Минерализация гумуса на 1га Минимальная обработка с применением минимальной защиты растений 127 Рапс яровой 11,4 5 57,0 570 0,9 1,1 80 207 -363 2 36 3.5 1260 3.4 5.4 295 606 902 Озимая пшеница 126.0 -358 915 188 555 Минерализация гумуса на 1га 367 -361 Минимальная обработка с применением адаптивно – интегрированной защиты -391 Рапс яровой 12,3 5 61.5 615 1.0 1,2 86 137 224 2 3,5 Озимая пшеница 39,4 137,9 1379 3,8 5,9 325 665 989 -390

997

206

401

607

-390

Минерализация гумуса на 1га

Приложение 20

Пораженность листовой ржавчиной растений озимой пшеницы в зависимости от предшественников, обработки почвы и систем защиты растений в севооборотах за 2019 год

Фактор	Фактор	Фактор	Больн	ых растен	ий ,%	Разви	тие болез	ни, %
A	В	C	По	По	По	По	По	По
			факто-	факто-	факто-	факто-	факто-	факто-
			py C	py B	py A	py C	py B	py A
Пар	B_1	C_1	83,8	50,3	48,9	17,6	10,6	
чистый	\mathbf{D}_1	C_2	16,8	30,3		3,5	10,0	10.6
A_1	D	C_1	82,1	17.5		18	10.6	10,6
	B_2	C_2	12,9	47,5		3,1	10,6	
Лен	р	C_1	76,3	46.2		13,4	7.0	
мас-	B_1	C_2	16,1	46,2	45,4	2,3	7,9	0 1
личный	D	C_1	73,5	44,6		13,9	8,3	8,1
A_2	B_2	C_2	15,6	44,0		2,6	8,3	
Горчи-	D	C_1	66,1	20 1	38,2	12,6	7.4	
ца бе-	B_1	C_2	10,1	38,1		2,2	7,4	7.6
лая	р	C_1	66,6	20.2		12,9	77	7,6
A_3	B_2	C_2	9,9	38,3		2,5	7,7	
Рапс	D	C_1	65,1	27.6	37,1	13,3	7.0	
яровой	B_1	C_2	10,1	37,6		2,4	7,9	0.1
A_4	D	C_1	62,9	267		13,9	0.2	8,1
	B_2	C_2	10,4	36,7		2,7	8,3	

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Приложение 21 Пораженность листовой ржавчиной растений озимой пшеницы в зависимости от предшественников, обработки почвы и систем защиты растений в севооборотах 2020 год.

Фактор	Фактор	Фактор	Больн	ых растен	ий ,%	Разви	тие болез	ни, %	
A	В	C	По	По	По	По	По	По	
			факто-	факто-	факто-	факто-	факто-	факто-	
			py C	py B	py A	py C	ру В	py A	
Пар	B_1	C_1	57,6	34,2		13,1	7,8		
чистый	D ₁	C_2	10,7	34,2	241	2,5	7,8	7,9	
A_1	D	C_1	57,4	34,0	34,1	13,4	7,9	7,9	
	B_2	C_2	10,6	34,0		2,4	7,9		
Лен	D	C_1	48,3	20.6		8,2	4,9		
мас-	B_1	C_2	8,9	28,6	28,5	1,6	4,9	4,9	
личный	D	C_1	47,9	20.2	28,3	8,4	5.0	4,9	
A_2	B_2	C_2	8,7	28,3		1,5	5,0		
Горчи-	р	C_1	41,1	24.2		6,5	2.0		
ца бе-	B_1	C_2	7,2	24,2	24.0	1,1	3,8	2.0	
лая	D	C_1	40,2	22.0	24,0	6,8	4 1	3,9	
A_3	B_2	C_2	7,3	23,8		1,3	4,1		
Рапс	D	C_1	44,2	26.2		7,7	1.6		
яровой	B_1	C_2	8,2	26,2	26.4	1,4	4,6	1.6	
A_4	D	C_1	44,8	26.6	26,4	7,8	4.7	4,6	
	B_2	C_2	8,3	26,6		1,5	4,7		

Приложение 22

Пораженность листовой ржавчиной растений озимой пшеницы в зависимости от предшественников, обработки почвы и систем защиты растений в севооборотах за 2021год

Фактор	Фактор	Фактор	Больн	ых растен	ий ,%	Развитие болезни, %		
A	В	C	По	По	По	По	По	По
			факто-	факто-	факто-	факто-	факто-	факто-
			py C	py B	py A	py C	py B	py A
Пар	B_1	C_1	86,3	51,8		20,9	12,5	
чистый	D ₁	C_2	17,2	31,0	51,8	4	12,3	12,6
A_1	B_2	C_1	86,2	51,8	31,8	21,2	12,7	12,0
	\mathbf{D}_2	C_2	17,4	31,0		4,1	12,7	
Лен	B_1	C_1	77	45,7		16,7	10,0	
мас-	Бl	C_2	14,3	43,7	45,5	3,3	10,0	10.1
личный	D	C_1	76,5	45.2	43,3	17,3	10.2	10,1
A_2	B_2	C_2	14,1	45,3		3,2	10,3	
Горчи-	р	C_1	70,2	41.0		14,9	9.0	
ца бе-	B_1	C_2	11,8	41,0	41.7	2,8	8,9	0.1
лая	р	C_1	71,6	42.4	41,7	15,9	0.4	9,1
A_3	B_2	C_2	13,1	42,4		2,9	9,4	
Рапс	D	C_1	74	44.4		17	10.2	
яровой	B_1	C_2	14,7	44,4	12.0	3,4	10,2	10.2
A_4	D	C_1	72,3	42.2	43,8	16,9	10.1	10,2
	B_2	C_2	14	43,2		3,3	10,1	

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Приложение 23

Пораженность корневыми гнилями растений озимой пшеницы в зависимости от предшественников, обработки почвы и систем защиты растений в севооборотах за 2019 год.

Фактор	Фактор	Фактор	Больн	ых растен	ий ,%	Разви	тие болез	ни, %
A	В	C	По	По	По	По	По	По
			факто-	факто-	факто-	факто-	факто-	факто-
			py C	py B	py A	py C	py B	py A
Пар	B_1	C_1	14,2	8,3		8,0	4,7	
чистый	\mathbf{D}_1	C_2	2,3	8,3	0.1	1,4	4,/	47
A_1	D	C_1	14,7	0 6	8,4	7,9	4.7	4,7
	B_2	C_2	2,5	8,6		1,4	4,7	
Лен	D	C_1	12,2	7.2		5,5	2.2	
мас-	B_1	C_2	2,1	7,2	7.2	0,9	3,2	2.2
личный	D	C_1	12,4	7.2	7,2	5,7	2.4	3,3
A_2	B_2	C_2	2,2	7,3		1,0	3,4	
Горчи-	р	C_1	9,3	5 1		3,6	2.1	
ца бе-	B_1	C_2	1,5	5,4	<i>5 (</i>	0,6	2,1	2.1
лая	D	C_1	9,8	<i>-</i> 7	5,6	3,4	2.0	2,1
A_3	B_2	C_2	1,6	5,7		0,6	2,0	
Рапс	D	C_1	10,7	()		4,6	2.7	
яровой	B_1	C_2	1,9	6,3	6.4	0,8	2,7	2.6
A_4	D	C_1	11	6.4	6,4	4,4	2.6	2,6
	B_2	C_2	1,8	6,4		0,7	2,6	

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Приложение 24

Пораженность корневыми гнилями растений озимой пшеницы в зависимости от предшественников, обработки почвы и систем защиты растений в севооборотах за 2020 год.

Фактор	Фактор	Фактор	Больн	ых растен	ий ,%	Разви	тие болез	ни, %
A	В	C	По	По	По	По	По	По
			факто-	факто-	факто-	факто-	факто-	факто-
			py C	py B	py A	py C	py B	py A
Пар	B_1	C_1	9,1	5,4		5,8	3,4	
чистый	\mathbf{D}_1	C_2	1,6	3,4	5.2	1	3,4	2.4
A_1	D	C_1	8,7	5 1	5,2	5,9	2.4	3,4
	B_2	C_2	1,5	5,1		0,9	3,4	
Лен	D	C_1	6,8	4.0		3,6	2.1	
мас-	B_1	C_2	1,1	4,0	4.0	0,6	2,1	2.1
личный	D	C_1	7,0	4.1	4,0	3,7	2.2	2,1
A_2	B_2	C_2	1,2	4,1		0,6	2,2	
Горчи-	р	C_1	4,3	2.5		2,3	1 /	
ца бе-	B_1	C_2	0,7	2,5	2.6	0,4	1,4	1.2
лая	р	C_1	4,4	2.6	2,6	2,2	1.2	1,3
A_3	B_2	C_2	0,8	2,6		0,4	1,3	
Рапс	D	C_1	5,3	2.1		2,9	1.7	
яровой	B_1	C_2	0,9	3,1	2.2	0,5	1,7	1.7
A_4	D	C_1	5,5	2.2	3,2	2,7	1.6	1,7
	B_2	C_2	0,9	3,2		0,5	1,6	

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Приложение 25

Пораженность корневыми гнилями растений озимой пшеницы в зависимости от предшественников, обработки почвы и систем защиты растений в севооборотах за 2021 год.

Фактор	Фактор	Фактор	Больн	ых растен	ий ,%	Разви	тие болез	ни, %
A	В	C	По	По	По	По	По	По
			факто-	факто-	факто-	факто-	факто-	факто-
			py C	py B	py A	py C	py B	py A
Пар	B_1	C_1	19,1	11,3		10,7	6,3	
чистый	\mathbf{D}_{l}	C_2	3,5	11,5	11,1	1,8	0,3	6,3
A_1	B_2	C_1	18,6	10,9	11,1	10,9	6,3	0,5
	\mathbf{D}_2	C_2	3,2	10,9		1,7	0,3	
Лен	B_1	C_1	16,8	9,8		8,7	5,1	
мас-	\mathbf{D}_1	C_2	2,8	9,0	10,0	1,5	3,1	5,1
личный	B_2	C_1	17,2	10,1	10,0	8,5	5,0	3,1
A_2	\mathbf{D}_2	C_2	2,9	10,1		1,5	3,0	
Горчи-	B_1	C_1	13,7	8,0		6,9	4,1	
ца бе-	\mathbf{D}_{l}	C_2	2,3	8,0	8,0	1,2	4,1	4,0
лая	B_2	C_1	13,4	8,0	8,0	6,8	4,0	4,0
A_3	\mathbf{D}_2	C_2	2,5	8,0		1,1	4,0	
Рапс	D	C_1	14,8	8,8		7,5	1.1	
яровой	B_1	C_2	2,7	0,0	8,8	1,3	4,4	15
A_4	D	C_1	15,2	0 0	0,0	7,8	1.6	4,5
	B_2	C_2	2,4	8,8		1,4	4,6	

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Приложение 26 Структура посевов озимой пшеницы в зависимости от предшественников, обработки почвы и средств защиты растений в 2019 году.

Сево- оборот Культу- ра Фактор А	Обра- ботка почвы Фактор В	Защита расте- ний Фактор С	Число взошедших растений, шт/м²	Полевая всхожесть, %	Число растений к уборке, шт/м²	Общая выживае- мость,%	Сохранность, %
Пар	B_1	C_1	443	80,5	404	73,5	91,2
чистый	\mathbf{D}_1	C_2	462	84,0	433	78,7	93,7
\mathbf{A}_1	B_2	C_1	436	79,3	391	71,1	89,7
	D 2	C_2	458	83,3	416	75,6	90,8
Лен	B_1	C_1	447	81,3	411	74,7	91,9
маслич-	Βl	C_2	452	82,2	420	76,4	92,9
ный A_2	B_2	C_1	443	80,5	400	72,7	90,3
	D 2	C_2	446	81,1	406	73,8	91,0
Горчица	B_1	C_1	449	81,6	406	73,8	90,4
белая А3	Dl	C_2	450	81,8	422	76,7	93,8
	B_2	C_1	434	78,9	390	70,9	89,9
	D 2	C_2	452	82,2	409	74,4	90,5
Рапс	B_1	C_1	434	78,9	408	74,2	94,0
яровой	ΒĮ	C_2	459	83,5	427	77,6	93,0
A_4	B_2	C_1	445	80,9	394	71,6	88,5
Φ.:.		C_2	459	83,5	406	73,8	88,5

Приложение 27 Структура посевов озимой пшеницы в зависимости от предшественников, обработки почвы и средств защиты растений в 2020 год.

Предше- ственник Сево- оборот Фактор А	Обра- ботка почвы Фактор В	Защита растений Фактор С	Число взошедших растений, шт/м²	Полевая всхожесть, %	Число растений к уборке, шт/м²	Общая выживае- мость,%	Сохранность, %
Попууу	B_1	C_1	467	84,9	440	80,0	94,2
Пар чис- тый А ₁		C_2	469	85,3	443	80,5	94,5
Тыи А1	D	C_1	466	84,7	436	79,3	93,6
	B_2	C_2	467	84,9	439	79,8	94,0
Лен мас-	B_1	C_1	416	75,6	390	70,9	93,8
личный A_2	D	C_2	422	76,7	394	71,6	93,4
	B_2	\mathbf{C}_1	411	74,7	380	69,1	92,5
		C_2	418	76,0	391	71,1	93,5
Горини	B_1	C_1	430	78,2	402	73,1	93,5
Горчица белая A ₃	Βl	C_2	436	79,3	410	74,5	94,0
	B_2	C_1	426	77,5	393	71,5	92,3
	ь2	C_2	429	78,0	397	72,2	92,5
Рапс яровой А ₄	B_1	C_1	415	75,5	387	70,4	93,3
	D]	C_2	416	75,6	392	80,0 94 80,5 94 79,3 93 79,8 94 70,9 93 71,6 93 69,1 92 71,1 93 73,1 93 74,5 94 71,5 92 72,2 92 70,4 93 71,3 94 69,3 92	94,2
	D	C_1	413	75,1	381	69,3	92,3
	B ₂	C_2	414	75,3	385		93,0

Структура посевов озимой пшеницы в зависимости от предшественников, обработки почвы и средств защиты растений в 2021 год.

оотки почвы и средств защиты растении в 2021 год.							
Фактор А	Фактор В	Фактор С	Число взошедших растений, шт/м²	Полевая всхожесть, %	Число растений к уборке, шт/м²	Общая выживае- мость,%	Сохранность, %
Пар	D	C_1	435	79,1	390	70,9	89,7
чистый	B_1	C_2	436	79,3	406	73,8	93,1
\mathbf{A}_1	B_2	C_1	435	79,1	380	69,1	87,4
		C_2	442	80,4	393	71,5	88,9
Лен	B_1	C_1	404	73,5	360	65,5	89,1
маслич- ный A ₂	D ₁	C_2	406	73,8	370	67,3	91,1
	B_2	C_1	392	71,3	344	62,5	87,8
		C_2	398	72,4	352	64,0	88,4
Горчица белая A_3	B_1	C_1	410	74,5	363	66,0	88,5
	DĮ	C_2	412	74,9	372	67,6	90,3
	B_2	C_1	402	73,1	350	63,6	87,1
	\mathbf{D}_2	C_2	407	74,0	355	64,5	87,2
Рапс яровой	B_1	C_1	408	74,2	362	65,8	88,7
	D	C_2	410	74,5	374	68,0	91,2
A_4	B_2	C_1	403	73,3	352	64,0	87,3
	D 2	C_2	406	73,8	369	67,1	90,9

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Приложение 29 Влияние предшественников, основной обработки почвы и применения защитных средств на структуру урожая озимой пшеницы за 2019 год.

Предшест-	Обработка	отка Защита Колич		гво, шт./м ²	Я	e,
венник Фактор А	почвы Фак- тор В	растений Фактор С	Растений	Продуктив- ных стеблей	Продуктивная кустистость	Количество зерен с колоса, шт.
Пар чистый А ₁	B_1	C_1	404	513	1,27	35,3
		C_2	433	541	1,25	36,1
	B_2	C_1	391	473	1,21	33,5
		C_2	416	516	1,24	34,2
Потголо	D	C_1	411	526	1,28	33,1
Лен мас- личный A_2	B_1	C_2	420	533	1,27	33,9
	B_2	C_1	400	480	1,20	31,8
		C_2	406	499	1,23	33,9
Горчица белая А ₃	B_1	C_1	406	532	1,31	32,5
		C_2	422	544	1,29	34,0
	B ₂	C_1	390	484	1,24	32,0
		C_2	409	511	1,25	32,4
Рапс яро- вой А ₄	B ₁	C_1	408	510	1,25	31,0
		C_2	427	534	1,25	32,3
	D	C_1	394	481	1,22	31,6
	B_2	C ₂	406	508	1,25	31,4

Приложение 30 Влияние предшественников, основной обработки почвы и применения защитных средств на структуру урожая озимой пшеницы за 2020 год.

Предшест-	Обработка	Защита рас-	Количество,		7	၁
венник	почвы Фак-	тений	шт./м ²		КУС	ен
Фактор А	тор В	Фактор С	Растений	Продуктив- ных стеблей	Продуктивная кус- тистость	Количество зерен колоса, шт.
	D	C_1	440	641	1,46	36,8
Пар чистый	B_1	C_2	443	648	1,46	37,6
A_1	D	C_1	436	621	1,42	34,5
	B_2	C_2	439	627	1,43	35,2
Поттольно	B ₁	C_1	390	570	1,46	34,5
Лен маслич-		C_2	394	579	1,47	34,7
ный А ₂		C_1	380	578	1,52	32,4
A_2	B_2	C_2	391	593	1,52	33,1
Гамичи ба	D	C_1	402	600	1,49	34,1
Горчица бе-	B_1	C_2	410	612	1,49	34,9
лая А ₃	D	C_1	393	591	1,50	33,8
A3	B_2	C_2	397	598	1,51	34,1
Рапс яровой	D	C_1	387	568	1,47	34,1
	B_1	C_2	392	580	1,48	34,6
A_4	B_2	C_1	381	567	1,49	33,6
	D ₂	C_2	385	577	1,50	33,3

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Фактор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Приложение 31 Влияние предшественников, основной обработки почвы и применения защитных средств на структуру урожая озимой пшеницы за 2021 год.

Предшест-	Обработка	Защита рас-	Количест	гво, шт./м ²		ı i
венник Фактор А	почвы Фак- тор В	тений Фактор С	Растений	Продуктив- ных стеблей	Продуктивная кустистость	Количество зерен с колоса, шт.
	D	C_1	390	511	1,31	26,4
Пар чистый	B_1	C_2	406	532	1,31	27,5
A_1	D	C_1	380	502	1,32	24,4
	B_2	C_2	393	515	1,31	25,1
Похумар	B_1	C_1	360	486	1,35	23,7
Лен мас- личный	\mathbf{D}_1	C_2	370	496	1,34	24,8
личныи A ₂	D	C_1	344	464	1,35	22,6
A_2	B_2	C_2	352	475	1,35	23,9
Голичий бо	D	C_1	363	486	1,34	23,1
Горчица бе-	B_1	C_2	372	502	1,35	24,2
лая А ₃	D	C_1	350	476	1,36	22,8
A3	B_2	C_2	355	486	1,37	23,4
	D	C_1	362	489	1,35	23,9
Рапс яровой	B_1	C_2	374	509	1,36	24,1
A_4	D	C_1	352	486	1,38	22,6
	B_2	C_2	369	494	1,34	24,4

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Приложение 32 Экономическая эффективность возделывания масличных культур за 2018–2020 год

			Севоо	борот		
Показатели	Лён мас	сличный	Горчи	ца белая	Рапс я	провой
TTORASATOJIII	комб	МИН	комб	МИН	комб	МИН
	Уровень но	рмальных а	гротехноло	гий		
Урожайность, т/га	1,24	1,08	1,26	1,05	1,39	1,14
Стоимость про- дукции, руб./т	50000	50000	50000	50000	40000	40000
с 1 га, руб.	62000	54000	63000	52500	55600	45600
Производствен- ные затраты на 1 га, руб.	15172	14682	17449	16950	14084	14199
Общие затраты на 1 га, руб.	18206	17618	20939	20340	16901	17039
Затраты труда,	5,86	5,46	6,30	5,90	5,78	5,38
чел–час на 1 га на 1 т	4,72	5,06	5,00	5,62	4,16	4,72
Себестоимость 1 т, руб	14682	16313	16618	19371	12159	14946
Условный чистый доход, руб/га	43794	36382	42061	32160	38699	28561
Уровень рента- бельности, %	241%	207%	201%	158%	229%	168%
	Уровен	ь интенсив	ных агротех	хнологий		
Урожайность, т/га	1,33	1,17	1,36	1,09	1,52	1,23
Стоимость про-	50000	50000	50000	50000	40000	40000
дукции, руб./т с 1 га, руб.	66500	58500	68000	54500	60800	49200
Производствен- ные затраты на 1 га, руб.	22031	22647	24334	23824	18535	20822
Общие затраты на 1 га, руб.	26437	27176	29201	28589	22242	24986
Затраты труда, чел–час на 1 га на	6,01	6,69	6,46	6,05	5,95	5,54
чел—час на 1 та на 1 т	4,52	5,72	4,75	5,55	3,91	4,50
Себестоимость 1 т, руб	19878	23227	21472	26229	14633	20314
Условный чистый доход, руб/га	40063	31324	38799	25911	38558	24214
Уровень рента- бельности, %	152	115	133	91	173	97

Приложение 33 Экономическая эффективность возделывания озимой пшеницы за 2019–2021 год

	Севооборот							
Показатели	1 (e/o	2 (c/o	3 (c/o	4 (c/o
	Комб.	Мини.	Комб.	Мин.	Комб.	Мин.	Комб.	Мин.
	Уро	вень нор	мальных	агротех	нологий			
Урожайность, т/га	5,05	4,88	3,69	3,48	3,97	3,72	3,78	3,60
Стоимость продук-	16000	16000	16000	16000	16000	16000	16000	16000
ции, руб./т с 1 га, руб.	80800	78080	59040	55680	63520	59520	60480	57600
Производственные затраты на 1 га, руб.	26140	26098	24548	24518	24616	24576	24570	24547
Общие затраты на 1 га, руб.	28754	28708	27003	26970	27078	27034	27027	27002
Затраты труда, чел-час на 1 га	7,26	7,24	7,44	7,41	7,47	7,44	7,45	7,43
на 1 т	1,44	1,48	2,02	2,13	1,88	2,00	1,97	2,06
Себестоимость 1 т, руб	5694	5883	7318	7750	6821	7267	7150	7500
Условный чистый доход, руб/га	52046	49372	32037	28710	36442	32486	33453	30598
Уровень рента- бельности, %	181	172	119	106	135	120	124	113
	Урог	вень инте	енсивных	агротех	нологий			
Урожайность, т/га	5,42	5,28	4,04	3,85	4,34	4,11	4,15	3,94
Стоимость продук-	16000	16000	16000	16000	16000	16000	16000	16000
ции, руб./т с 1 га, руб.	86720	84480	64640	61600	69440	65760	66400	63040
Производственные затраты на 1 га, руб.	28105	28070	26508	26483	26581	26546	26535	26505
Общие затраты на 1 га, руб.	30915	30878	29159	29131	29239	29201	29188	29155
Затраты труда, чел-	7,81	7,80	7,99	7,96	8,02	7,99	8,00	7,97
час на 1 га на 1 т	1,44	1,48	1,98	2,07	1,85	1,95	1,93	2,02
Себестоимость 1 т, руб	5704	5848	7217	7566	6737	7105	7033	7400
Условный чистый доход, руб/га	55805	53602	35481	32469	40201	36559	37212	33885
Уровень рента- бельности, %	181	174	122	111	137	125	127	116

Приложение 34

Экономи	неская эфо	рективнос	ть воздел	ывания зв	еньев сево	оборотов	с озимой	пшеницей
Фактор	Фактор	Фактор	Про-	Стои-	Затра-	Услов-	Себест.	Уро-
A	В	C	дуктив-	мость	ты на 1	ный чд	Прод.	вень
			ность	про-	га,			рент, %
			3.e. c 1	дукции				
		C	га					
П	B_1	C_1		_	_	_	_	_
Пар		C_2	_	_	_	_	_	_
чистый	B_2	C_1	_	_	_	_	_	_
		C_2		-	-			-
Озимая	B_1	C_1	5,05	80800	28754	52046	5693	181
пше-	1	C_2	5,42	86720	30815	55805	5685	181
ница	B_2	C_1	4,88	78080	28708	49372	5883	172
	22	C_2	5,28	84480	30878	53602	5848	174
Сред-	B_1	C_1	2,53	40400	14377	26023	5683	181
нее по	D 1	C_2	2,71	43360	15408	27903	5686	181
звену	B_2	C_1	2,44	39040	14354	24686	5883	172
Sherry	D ₂	C_2	2,64	42240	15439	26801	5848	174
Лен	B_1	C_1	2,05	62000	18206	43794	12235	241
маслич	Dl	C_2	2,19	66500	26437	40063	16565	152
ный	р	C_1	1,78	54000	17618	36382	13594	207
	B_2	C_2	1,93	58500	27176	31324	19356	115
0	D	C_1	3,69	59040	27003	32037	5643	119
Озимая	B_1	C_2	4,04	64640	29159	35481	5652	122
пше-	D	C_1	3,48	55680	26970	28710	5755	106
ница	B_2	C_2	3,85	61600	29131	32469	5925	111
	_	C_1	2,87	60520	22605	37915	7876	168
Сред-	B_1	C_2	3,12	65570	27798	37772	8909	136
нее по	_	C_1	2,63	54840	22294	32546	8477	145
звену	B_2	C_2	2,89	60050	28154	31897	9742	113
		C_1	2,97	63000	20939	42061	13848	201
Горчи-	B_1	C_2	3,23	68000	29201	38799	17893	133
ца бе-		C_1	2,68	52500	20340	32160	16143	158
лая	B_2	C_2	2,91	54500	28589	25911	21857	91
		C_2	3,97	63520	27078	36442	5249	135
Озимая	B_1	C_1	4,34	69440	29239	40201	5232	137
пше-		C_2	3,72	59520	27034	32486	5585	120
ница	B_2			65760	29201	36559	5496	125
		C_2	4,11					
Сред-	B_1	C_1	2,97	63260	24009	39252	8084	163
нее по		C ₂	3,23	68720	29220	39500	9046	135
звену	B_2	C_1	2,68	56010	23687	32323	8838	136
	_	C_2	2,91	60130	28895	31235	9930	108
	B_1	C_1	2,84	55600	16901	38699	10132	229
Рапс	- 1	C_2	3,11	60800	22242	38558	12194	173
яровой	B_2	C_1	2,58	45600	17039	28561	12455	168
	2,	C ₂	2,81	49200	24986	24214	16977	97
Озимая	B_1	C_1	3,78	60480	27027	33453	5509	124
пше-	الا	C_2	4,15	66400	29188	37212	5494	127
	B_2	C_1	3,60	57600	27002	30598	5749	113
ница	\mathbf{D}_2	C_2	3,94	63040	29155	33885	5775	116

Продолжение приложения 34

Cmar	D	C_1	2,84	58040	21964	36076	7734	164
Сред-	B_1	C_2	3,11	63600	25715	37885	8268	150
нее по	C_1	2,58	51600	22021	29580	8535	140	
звену	B_2	\mathbb{C}_2	2,81	56120	27071	29050	9634	107

 Φ актор B: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Фактор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Приложение 35 Энергетическая эффективность возделывания масличных культур в зависимости от обработки почвы и защиты растений в среднем за 2018—2020 год.

Фактор	Фактор	Фактор	Урожай-	Затраты	Содержа-	Коэффици-
A	В	C	ность т/га	энергии	ние энер-	ент энерге-
				ГДж/га	гии в уро-	тической
					жае ГДж/га	эффектив-
						ности
Лен	B_1	C_1	1,24	12,02	20,40	1,70
маслич-	Βl	C_2	1,33	13,13	21,88	1,67
ный A_2	D	C_1	1,08	11,96	17,77	1,49
	B_2	C_2	1,17	12,53	19,25	1,54
Горчица	D	C_1	1,26	12,78	20,73	1,62
белая	B_1	C_2	1,36	14,32	22,37	1,56
A_3	D	C_1	1,05	12,06	17,27	1,43
	B_2	C_2	1,09	13,57	17,93	1,32
Рапс	D	C_1	1,39	12,75	22,87	1,79
яровой	B_1	C_2	1,52	14,75	25,01	1,70
A_4	D	C_1	1,14	11,99	18,76	1,56
	B_2	C_2	1,23	14,79	20,24	1,37

Фактор В: B_1 — дискование на 10-12 см + рыхление на 25-27 см; B_2 — дискование на 10-12 см + культивация на 12-14 см

 Φ актор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Приложение 36 Энергетическая эффективность возделывания озимой пшеницы в зависимости от обработки почвы и защиты растений в севооборотах в среднем за 2019—2021 год.

Фактор	Фактор	Фактор	Урожай-	Затраты	Содержа-	Коэффици-
Α	В	C	ность т/га	энергии	ние энер-	ент энерге-
				ГДж/га	гии в уро-	тической
					жае ГДж/га	эффектив-
						ности
Пар	B_1	C_1	5,05	28,30	83,08	2,94
чистый	\mathbf{D}_1	C_2	4,88	26,54	80,29	3,03
\mathbf{A}_1	B_2	\mathbf{C}_1	3,69	25,08	60,71	2,42
	\mathbf{D}_2	C_2	3,48	25,36	57,25	2,26
Лен	B_1	C_1	3,97	25,84	65,31	2,53
маслич-	\mathbf{D}_1	C_2	3,72	25,60	61,20	2,39
ный А2	B_2	C_1	3,78	25,66	62,19	2,42
	\mathbf{D}_2	C_2	3,60	25,48	59,23	2,32
Горичи	D	C_1	5,42	28,53	89,17	3,13
Горчица белая A ₃	B_1	C_2	5,28	29,24	86,87	2,97
Оелая Аз	D	\mathbf{C}_1	4,04	27,71	66,47	2,40
	B_2	C_2	3,85	27,10	63,34	2,34
Рапс	D	C_1	4,34	27,58	71,40	2,59
яровой	B_1	C_2	4,11	27,36	67,62	2,47
A_4	D	C_1	4,15	27,39	68,28	2,49
	B_2	C_2	3,94	27,19	64,82	2,38

Фактор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Фактор C: C_1 — гербицид; C_2 — протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Приложение 37 Энергетическая эффективность возделывания звеньев севооборотов с озимой пшеницей

Фактор А	Фактор В	Фактор С	Урожай-	Затраты	Содержа-	Коэффи-
Фактор А	Фактор Б	Фактор С	ность т/га	эаграгы	-	циент
			ность 1/1а	энергии ГДж/га	ние энер- гии в	энергети-
				1 ДЖ/1 а	урожае	ческой
					урожас ГДж/га	эффек-
					1 дж/1 а	тивности
Пар чис-	B_1	C_1	5,05	28,30	83,08	2,94
тый –	B_1	C_2	4,88	26,54	80,29	3,03
озимая	$ ho_2$	C_1	3,69	25,08	60,71	2,42
пшеница	\mathbf{D}_2	C_1	3,48	25,36	57,25	2,42
Среднее	B_1	C_2	2,81	14,15	41,54	1,47
по звену	\mathbf{D}_1	C_1	2,99	13,27	40,15	1,52
по звену	$ ho_2$	C_2	2,73	12,54	30,36	1,32
	\mathbf{D}_2	C_1	2,73	12,54	28,63	1,13
	D			12,08		· ·
Поуглина	B_1	C_1	1,24		20,40	1,70
Лен мас-	D	C_2	1,33	13,13	21,88	1,67
личный	B_2	C_1	1,08	11,96	17,77	1,49
	D	C_2	1,17	12,53	19,25	1,54
0	\mathbf{B}_1	C_1	3,97	25,84	65,31	2,53
Озимая	D	C ₂	3,72	25,60	61,20	2,39
пшеница	B_2	C_1	3,78	25,66	62,19	2,42
	D	C_2	3,6	25,48	59,23	2,32
G	\mathbf{B}_1	C_1	3,14	18,93	42,86	2,26
Среднее		C_2	3,39	19,37	41,54	2,15
по звену	B_2	C_1	3,00	18,81	39,98	2,13
	D	C_2	3,04	19,01	39,24	2,06
_	\mathbf{B}_1	C_1	1,26	12,78	20,73	1,62
Горчица		C_2	1,36	14,32	22,37	1,56
белая	B_2	C_1	1,05	12,06	17,27	1,43
		C ₂	1,09	13,57	17,93	1,32
	\mathbf{B}_1	C ₁	5,42	28,53	89,17	3,13
Озимая	_	C_2	5,28	29,24	86,87	2,97
пшеница	B_2	C_1	4,04	27,71	66,47	2,40
		C_2	3,85	27,10	63,34	2,34
	B_1	C_1	3,22	20,66	54,95	2,66
Среднее		C_2	3,48	21,78	54,62	2,51
по звену	B_2	C_1	2,93	19,89	41,87	2,11
		C_2	3,11	20,34	40,64	2,00
	\mathbf{B}_1	C_1	1,39	12,75	22,87	1,79
Рапс яро-		C_2	1,52	14,75	25,01	1,70
вой	B_2	C_1	1,14	11,99	18,76	1,56
		C_2	1,23	14,79	20,24	1,37
Озимая	B_1	C_1	4,34	27,58	71,40	2,59
пшеница		C_2	4,11	27,36	67,62	2,47
	B_2	C_1	4,15	27,39	68,28	2,49
		C_2	3,94	27,19	64,82	2,38

Продолжение приложения 37

	B_1	C_1	3,11	20,17	47,14	2,34
Среднее		C_2	3,39	21,06	46,32	2,20
по звену	B_2	C_1	2,86	19,69	43,52	2,21
		C_2	2,95	20,99	42,53	2,03

 Φ актор В: B_1 – дискование на 10-12 см + рыхление на 25-27 см; B_2 – дискование на 10-12 см + культивация на 12-14 см

Фактор C: C_1 – гербицид; C_2 – протравливание семян, гербицид + биофунгицид, инсектициды и фунгициды.

Акт внедрения

«УТВЕРЖДАЮ»

Первый проректор – проректор по

научной работе ФГОУ ВО

Ульяновский ГАУ

к.в.н, доцен

И.И. Богданов

7021 г

«УТВЕРЖДАЮ»

Глава КФХ

anekcen die

/// А.В. Ковлов 2021 г.

АКТ внедрения

научно исследовательской работы

Мы, нижеподписавшиеся представители федерального бюджетного государственного образовательного учреждения высшего образования «Ульяновский государственный аграрный университет им. П.А. Столыпина» доцент Тойгильдин Александр Леонидович, аспирант Остин Владимир Николаевич с одной стороны и представитель КФХ Козлова А.В. Майнского района Ульяновской области директор Козлов Алексей Васильевич составили настоящий акт в том, что в 2018-2020 гг. аспирантом ФГБОУ ВО Ульяновский ГАУ Остиным В.Н. на полях КФХ Козлова А.В. внедрена следующая научно — технологическая разработка: обоснование звеньев севооборотов и приемов возделывания масличных культур (лен масличный, рапс яровой) и озимой пшеницы.

1. В процессе внедрения выполнены следующие работы:

Проведено экономическое обоснование и внедрение звеньев севооборотов — «рапс яровой — озимая пшеница» и «лен масличный — озимая пшеница» взамен традиционным звеньям «чистый пар — озимая пшеница». Обоснована технология подготовки почвы к посеву озимой пшеницы после различных предшественников. Расчеты показали, что озимая пшеница после рапса ярового и льна масличного формирует урожай ниже, чем после чистого пара на 20-25 %, однако продуктивность и экономическая эффективность звеньев с непаровыми предшественниками существенно выше парового звена севооборота. Доказано, что после уборки предшественника при традиционной технологии возделывания культур

обработка почвы должна проводится по следующей схеме: 2- кратное дискование на 10-12 и 10-8 см + культивация на 4-6 см, в случае наличия соответствующей техники следует проводить прямой сев озимой пшеницы.

2. Технико-экономические и социальные показатели внедрения разработки по сравнению с базовым, исходным вариантом:

Замена чистых паров на непаровые предшественники позволяет существенно снизить эрозионные процессы и деградацию почвенного плодородия, эмиссию углерода в атмосферу и повысить экономическую эффективность севооборотов и их звеньев.

3. Согласно методике МСХ РФ экономическая эффективность (в рублях) составила по формуле: Э= (Ун*Сн – Ук * Ск - 3д)*П

Ун, Ук – урожайность нового и контрольного вариантов, т/га.

Сн, Ск – стоимость 1 т продукции нового и контрольного вариантов, руб.

3Д – дополнительные производственные затраты в новом варианте, руб.

П – площадь внедрения, га.

$$\ni = (У_H * C_H - У_K * C_K - 3д)*\Pi = (22,0 * 1709 - 22,0 * 1200 - 5000) * 400$$
= 5 599 000руб.

- 4. Доля научной разработки в экономическом эффекте составляет 50 % т. е. 2 799 500руб.
 - 5. Предложение о дальнейшем внедрении работы и другие замечания:

Применение разработок рекомендуется к внедрению в агропредприятия Среднего Поволжья

Акт составлен в 5 экземплярах.

предприятия

Представители университета

An An

Представители