На правах ј	рукописи
-------------	----------

Гусева Светлана Андреевна

Влияние показателей почвенного плодородия чернозема обыкновенного на урожайность многолетних трав в лесостепи Среднего Поволжья

Специальность 06.01.01 – общее земледелие, растениеводство

Автореферат

диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Самарский государственный аграрный университет»

Научный руководитель:

кандидат биологических наук, профессор

Марковская Галина Кусаиновна

Официальные оппоненты:

Ивенин Валентин Васильевич, доктор сельскохозяйственных наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородская государственная сельскохозяйственная академия», заведующий кафедрой земледелия и растениеводства

Козлов Андрей Владимирович, кандидат биологических наук, доцент, федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный педагогический университет имени Козьмы Минина», доцент кафедры экологического образования и рационального природопользования

Ведущая организация:

федеральное государственное бюджетное образовательное учреждение высшего образования «Оренбургский государственный аграрный университет», г.Оренбург

Защита диссертации состоится 20 апреля 2020 года в 11^{00} часов на заседании диссертационного совета Д 999.091.03 на базе ФГБОУ ВО Самарский ГАУ по адресу: 446424 п.г.т. Усть-Кинельский, ул. Учебная, 2. Тел.: 8(846) 6346131

С диссертацией можно ознакомиться в научной библиотеке федерального государственного образовательного учреждения высшего образования «Самарский государственный аграрный университет» и на сайте www.ssaa.ru

Автореферат разослан «	»	2020 г.
------------------------	---	---------

Ученый секретарь диссертационного совета

Троц Наталья Михайловна

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследований. Почвы Среднего Поволжья обладают большим запасом основных питательных веществ. Валовое содержание элементов питания в данных почвах достаточно для получения хороших урожаев, даже очень требовательных к плодородию почв культур, в течение многих лет. В структуре севооборотов сейчас основное место занимают экономически выгодные культуры: озимая пшеница, ячмень, кукуруза и подсолнечник. Ежегодное возделывание этих культур приводит к ухудшению агрофизических свойств почв и к их истощению, поэтому севооборот необходимо конструировать, а не просто организовывать и использовать. Одним из практически неиспользуемых резервов биологизации и экологизации земледелия в Среднем Поволжье является возделывание многолетних трав.

Главным направлением в повышении плодородия почвы за счёт многолетних трав является правильный подбор фитоценоза. Адаптивная направленность видового состава трав позволяет за короткий срок обеспечить восстановление и расширенное воспроизводство органического вещества в почве. Одним из показателей плодородия почв является содержание гумуса. При этом изучение роли микрофлоры в процессах гумусообразования и дегумификации является одним из ключевых вопросов на пути к решению задач повышения плодородия почв. При введении новых приемов земледелия исследование жизнедеятельности почвенных микроорганизмов, связанной с процессами трансформации органического вещества, становится особенно важным и связано с проблемой снижения содержания гумуса. Это во многом обусловлено ускоренной минерализацией органического вещества почв, приводящей к снижению уровня их потенциального плодородия, о чем неоднократно отмечалось в работах отечественных и зарубежных авторов. В связи с этим, разработка эффективных приемов по восстановлению плодородия почв при интенсивных агрогенных нагрузках, весьма важна и актуальна в практике земледелия.

Степень разработанности проблемы. В научной литературе приведены публикации исследований по изучению влияния одновидовых посевов многолетних трав на агробиологические и физические свойства почвы. Такие исследования в разные годы проводили в Нечерноземной зоне, Нижнем Поволжье, в Среднем Поволжье. В них рассматривались особенности микробиологических процессов почвообразования, изменение ферментативной активности и динамики агрофизических свойств почвы под влиянием одновидовых посевов многолетних трав. Проведенное исследование в теоретическом плане базировалось на работах следующих ученых: А.Р. Аблаева, 2011,

Р.Ф. Байбеков, 2012, И.С. Белюченко, 2015, Е.Е. Борисова, 2015, Н.А. Вахрушев, 2010, Е.В. Даденко, 2013, Г.М. Зенова, 1992, М.К. Зинченко, 2018, Е.П. Иванова, 2012, А.Н. Каштанова, 2013, С.И. Коржов, 2000, В.А. Королев, 2002, Ю.Ф. Курдюков, 2009, А.А. Кутузова, 2014, В.И. Морозов, 2010, А.А. Платунов, 2011, Л.Д. Стахурлова, 2007, И.А. Тихонович, 2006, Г.Н. Федотов, 2012, Ф.Х. Хазиев, 2017.

Цель исследований — оценить влияние агробиологических показателей плодородия чернозёма обыкновенного на урожайность многолетних трав в лесостепи Среднего Поволжья.

Задачи исследований. В соответствии с поставленной целью нами решались следующие задачи:

- определить численность основных групп почвенных микроорганизмов (бактерий, грибов и актиномицетов) в посевах многолетних трав;
 - определить структурно-агрегатный состав и влажность почвы;
- дать оценку ферментативным процессам с показателями активности пероксидазы и полифенолоксидазы;
- оценить влияние показателей биологической активности почвы на урожайность многолетних трав;
- дать оценку агроэнергетическим показателям и определить экономическую эффективность возделывания многолетних трав.

Объект и предмет исследований. Объектом исследований являются смешанные посевы многолетних бобово-злаковых трав. Предмет исследований — оценка влияния агробиологических показателей почвы на урожайность многолетних травостоев.

Научная новизна. Для чернозема обыкновенного лесостепной зоны Среднего Поволжья выявлен состав и численность основных групп микроорганизмов в комплексе с агрофизическими показателями почвы. Проведена оценка ферментативной активности и коэффициента гумификации с показателями полифенолоксидазы и пероксидазы. Установлена положительная корреляция между агробиологическими показателями почвы и урожайностью многолетних трав.

Теоретическая и практическая значимость. На основе агробиологических показателей почвы дано научно-практическое обоснование использования поливидовых посевов многолетних трав. Установлено улучшение биохимических и физических свойств почвы за счет возделывания смешанных посевов многолетних трав.

Полученные данные вносят существенный вклад в развитие научных представлений о биохимических процессах почвообразования в агроценозах многолетних травостоев. Результаты исследований значительно углубляют

научное представление о роли многолетних трав в биологизации и управлении плодородием почвы.

Результаты исследований прошли производственную проверку в СПК (Колхоз) «Луч Ильича» Борский район Самарская область на площади 100 га, что подтверждено актом внедрения. Результаты исследований используются в учебном процессе ФГБОУ Самарский ГАУ.

Методология и методы исследований. Методология исследований основана на изучении научной литературы отечественных и зарубежных авторов. Методы исследований: теоретические — обработка результатов исследований методом статистического анализа; эмпирические — полевые и лабораторные опыты, графическое и табличное отображение полученных результатов.

Положения, выносимые на защиту:

- микробиологическая активность почв в посевах многолетних трав;
- агрофизические показатели почвы;
- активность ферментов полифенолокзидаза и пероксидаза и значения коэффициента гумификации;
 - урожайность многолетних трав;
 - агроэнергетическая и экономическая оценка применения травосмесей.

Достоверность результатов. Результаты исследований подтверждаются современными методами проведения исследований в полевых опытах, необходимым количеством наблюдений и учетов, результатами статистической обработки экспериментальных данных, показателями корреляционной оценки.

Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на заседании кафедры «Садоводство, ботаника и физиология растений» Самарского ГАУ 2015–2019 гг., на Международных научно-практических конференциях «Инновационные достижения науки и техники в АПК» Самарский ГАУ (Кинель, 2016); «Современные тенденции развития науки и технологий» (Белгород, 2017); «Вклад молодых ученых в аграрную науку» Самарский ГАУ (Кинель, 2018); «Концепции фундаментальных и прикладных научных исследований» (Екатеринбург, 2018), «Инновационные пути решения актуальных проблем АПК России» (Персиановский, 2018).

По теме диссертации опубликовано 8 научных работ, в том числе 2 публикации в изданиях, рекомендованных ВАК РФ.

Объем и структура диссертации. Диссертационная работа изложена на 173 страницах и состоит из введения, 5 глав, заключения и предложений производству, содержит 26 таблиц, 29 рисунков. В библиографическом спис-

ке указано 201 наименование, в том числе 20 исследований зарубежных авторов. В работе имеется 34 приложения.

Личный вклад автора заключается в непосредственном участии в полевых исследованиях, выполнении всех биометрических наблюдений и исследований, ежегодном представлении научных отчетов, на основании которых обобщались полученные результаты, и было сформировано заключение и дано предложение производству.

Автор выражает искреннюю благодарность и признательность за консультации и помощь в работе научному руководителю, кандидату биологических наук, профессору кафедры «Садоводство, ботаника и физиология растений» профессору Марковской Галине Кусаиновне.

2 УСЛОВИЯ И МЕТОДЫ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

Полевые опыты закладывались на экспериментальном участке научноисследовательской лаборатории «Корма» Самарского ГАУ в 2015 г. Почва опытного участка содержит органического вещества 5,7%, подвижного фосфора — 62,2 мг/кг, обменного калия — 230,0 мг/кг, легкогидролизуемого азота — 64,0 мг/кг (по данным испытательной лаборатории ФГУ Самарский референтный цент Россельхознадзора).

Агротехника включала в себя обработку гербицидом сплошного действия Глифор — 4 л/га за 2 недели до основной обработки почвы, вспашку на 38–40 см, весеннее двукратное боронование. Посев проводился сеялкой AMAZONED-9-25 обычным рядовым способом. После посева поле прикатывалось кольчато-шпоровыми катками ККШ-6. Площадь делянки — 83,3 м². Исследования проводились в течение трех лет. В опыте изучались следующие варианты чистых и смешанных посевов многолетних трав:

- 1. Кострец безостый;
- 2. Житняк гребневидный;
- 3. Кострец безостый + кострец прямой;
- 4. Житняк гребневидный + пырей сизый;
- 5. Кострец безостый + кострец прямой+ эспарцет песчаный;
- 6. Житняк гребневидный + пырей сизый + эспарцет песчаный;
- 7. Кострец безостый + кострец прямой + люцерна синегибридная;
- 8. Житняк гребневидный + пырей сизый + люцерна синегибридная;
- 9. Кострец безостый + кострец прямой + лядвенец рогатый;
- 10. Житняк гребневидный + пырей сизый + лядвенец рогатый.

Чтобы иметь возможность выявить степень влияния различного рода антропогенной нагрузки на почвы агроэкосистем, мы изучили образцы почвы

под бессменными посевами суданской травы, прилегающих к опытным участкам:

11. Суданская трава.

В опытах использовались сорта: Кострец безостый: Сорт Безенчукский 9. Кострец прямой: Сорт Дол. Житняк гребневидный: Сорт Батыр. Пырей сизый: Сорт Кызыл Жар. Эспарцет песчаный: Сорт Песчаный 22. Люцерна синегибридная: Сорт Вега 88. Лядвенец рогатый: Сорт Солнышко. Суданская трава: Сорт Кинельская 100.

Выделение микроорганизмов из почвенных образцов и определение численности основных агрономически полезных групп проводили методом посева разведенной почвенной взвеси на твердые стерильные питательные среды в чашки Петри. Влажность определяли гравиметрическим (термостатно-весовой) методом. Определение структуры почвы осуществлялась методом «сухого» просеивания. Потенциальная целлюлозоразлагающая активность почвы оценивалась с помощью аппликационного метода Е.Н. Вострова и А.Н. Петровой. Активность ферментов пероксидаза и полифенолоксидаза определяли методом А. Ш. Галтян, А. И. Чундеровой. Расчет агроэнергетической эффективности проводился по методике ВНИИ кормов и методики Самарской ГСХА. Экономическая эффективность рассчитывалась по общепринятой методике в сопоставимых ценах. Статистическую обработку данных, корреляционный анализ проводили в соответствии с методами с использованием пакета анализа Microsoft Excel.

3 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

3.1 Микробиологическая активность почвы

Микроскопические грибы обязательно присутствуют во всех биоценозах, они являются одним из основных звеньев детритных цепей и выполняют в экосистемах ряд ключевых функций.

Анализ динамики микромицетов за 3 года исследований показал, что численность микромицетов по всем вариантам и срокам наиболее вариабельна, и колеблется от 12,68 до 60,67 тыс. КОЕ/1г а.с.п. (таблица 1). В первый срок определения отмечена самая низкая численность микромицетов. Стоит отметить, что в холодное время года резко снижается рост грибов, только дрожжи, хотя и медленно, но способны размножаться при температурах около 0° . Поэтому роль дрожжевых грибов в разложении растительных остатков особенно значительна в холодные периоды года.

Таблица 1 — Численность микромицетов в среднем за 2016-2018 гг. (тыс КОЕ/1г а.с.п.)

	`				
Варианты	Слой поч-	Сров	Сроки определения		
Бириипты	вы, см	11	2	3	В среднем
1.Кострец безостый	0-20	26,42	48,60	32,98	36,00
	20-40	13,86	47,85	22,69	28,13
	0-40	20,14	48,22	27,84	32,07
	0-20	18,35	60,67	22,21	33,74
2.Житняк гребневидный	20-40	14,08	41,31	30,95	28,78
•	0-40	16,21	50,99	26,58	31,26
2.10	0-20	17,22	19,79	30,96	22,66
3.Кострец безостый + кострец пря-	20-40	20,67	36,80	33,64	30,37
мой	0-40	18,95	28,30	32,30	26,51
	0-20	16,40	42,94	27,68	29,01
4.Житняк гребневидный + пырей	20-40	14,68	40,11	33,93	29,57
сизый	0-40	15,54	41,53	30,80	29,29
	0-20	18,77	44,54	27,71	30,34
5.Кострец безостый + кострец пря-	20-40	15,26	39,95	29,14	28,12
мой + эспарцет песчаный	0-40	17,02	42,24	28,43	29,23
	0-20	13,90	36,90	38,20	29,67
6.Житняк гребневидный + пырей	20-40	26,40	26,23	38,35	30,32
сизый + эспарцет песчаный	0-40	20,15	31,56	38,27	30,00
	0-20	18,51	54,35	22,66	31,84
7.Кострец безостый + кострец пря-	20-40	12,68	38,65	23,39	24,91
мой + люцерна синегибридная	0-40	15,60	46,50	23,02	28,37
	0-20	13,09	31,08	23,17	22,45
8.Житняк гребневидный + пырей	20-40	16,67	39,81	30,60	29,03
сизый + люцерна синегибридная	0-40	14,88	35,45	26,89	25,74
	0-20	17,61	31,62	28,51	25,92
9.Кострец безостый + кострец пря-	20-40	17,48	36,27	37,18	30,31
мой + лядвенец рогатый	0-40	17,55	33,94	32,85	28,11
	0-20	14,82	44,60	20,30	26,57
10.Житняк гребневидный + пырей	20-40	13,22	49,71	21,10	28,01
сизый + лядвенец рогатый	0-40	14,02	47,16	20,70	27,29
	0-40	21,68	27,99	25,07	24,91
11.Суданская трава	20-40	21,05	30,60	22,80	24,88
	0-40	21,46	29,30	23,94	24,90
2016	HCP05 0 20	2,03	2,03	2 .57	44,70
2010	20-40	1,67	2,36	1,94	
2017	HCP05 0-20	1,61	2,54	2,28	
	20-40	2,17	2,26	2,03	
2018	HCP05 0-20	1,96	2,26	1,61	
	20-40	1,98	2,01	1,61	

Самая высокая численность была отмечена в варианте суданская трава -21,46 тыс., самая низкая в посевах житняк гребневидный + пырей сизый + лядвенец рогатый -14,02 тыс.

Во второй срок определения наблюдалось повышение численности данной группы микроорганизмов почти в два раза, рост был отмечен в чи-

стых посевах житняка гребневидного – 50,99 тыс. Самый низкий показатель отмечен в варианте кострец безостый + кострец прямой – 28,30 тыс.

В третий срок определения результаты наиболее вариабельны. Высокая численность отмечена в варианте житняк гребневидный + пырей сизый + эспарцет песчаный – 38,27 тыс., самая низкая численность микромицетов в варианте житняк гребневидный + пырей сизый + лядвенец рогатый – 20,70 тыс. Низкую численность микроорганизмов в посевах лядвенца рогатого можно объяснить тем, что в фазе массового цветения в листьях и цветках в отдельные годы может накапливаться небольшое количество синильной кислоты, что может угнетать рост микроорганизмов.

Таким образом, за три года исследований наибольшая численность микромицетов была отмечена в вариантах с чистыми посевами костреца безостого и житняка гребневидного. Анализ динамики численности микромицетов по годам показал, что во всех вариантах с 2016 по 2018 год численность данной группы микроорганизмов с каждым годом возрастает. С 2016 по 2017 год данный показатель вырос на 34 %, а с 2016 по 2018 год на 46 %. Это связано с тем, что после многолетних трав в почве накапливается достаточное количество растительных остатков и первыми их колонизируют микромицеты.

Микроскопический анализ микромицетов показал, что основными представителями состава являются роды Pennicilium, Aspergillus и Mucor. Данные роды являются природными биодеструкторами. Кроме этого было отмечено уменьшение с 2016 по 2018 год патогенных микромицетов рода Fusarium. Все это говорит о том, что возделывание многолетних трав увеличивает количество сапротрофных и антагонистических микромицетов, которые оказывают губительное действие на патогенную микрофлору. В результате численность патогенов в почве снижается, растения лучше развиваются и образуют большое количество корневых выделений, которыми и питаются сапротрофы.

Наиболее чувствительными к загрязнению ароматическими углеводородами являются бактерии, которые могут служить индикаторами изменения почв.

Анализ данных по численности бактерий в среднем за 2016-2018 гг. (таблица 2) показывает, что количество их колеблется от 1,32 до 16,57 млн KOE/1г а.с.п. В первый срок определения наибольшая численность была отмечена в посевах суданской травы -4,2 млн, самая низкая - в варианте кострец безостый + кострец прямой -1,5 млн.

Таблица 2 — Численность бактерий в среднем за 2016-2018 гг. (млн КОЕ/1г а.с.п.)

	~ · ·				1
Варианты	Слой поч-	Сроки определения			В среднем
	вы, см	1	2	3	-
1.Кострец безостый	0-20	2,08	3,65	5,60	3,78
	20-40	1,96	3,44	9,83	5,08
	0-40	2,0	3,5	7,7	4,43
	0-20	1,45	1,89	8,11	3,82
2.Житняк гребневидный	20-40	1,80	2,00	6,95	3,58
	0-40	1,6	1,9	7,5	3,70
2 Waarran 5 aan ar × 1 ar	0-20	1,51	11,04	6,20	6,25
3.Кострец безостый + кострец пря-	20-40	1,53	1,64	3,55	2,24
мой	0-40	1,5	6,3	4,9	4,24
4.270	0-20	2,30	2,28	10,60	5,06
4.Житняк гребневидный + пырей	20-40	2,03	1,32	6,94	3,43
сизый	0-40	2,2	1,8	8,8	4,24
- T. C.	0-20	2,81	2,49	7,84	4,38
5.Кострец безостый + кострец пря-	20-40	2,90	3,09	5,58	3,86
мой + эспарцет песчаный	0-40	2,9	2,8	6,7	4,12
	0-20	2,58	3,40	16,57	7,52
6.Житняк гребневидный + пырей	20-40	2,42	2,03	16,39	6,95
сизый + эспарцет песчаный	0-40	2,5	2,7	16,5	7,23
	0-20	1,40	2,50	3,16	2,35
7.Кострец безостый + кострец пря-	20-40	2,45	3,68	4,76	3,63
мой + люцерна синегибридная	0-40	1,9	3,1	4,0	2,99
	0-40	1,65	9,72	7,47	6,28
8.Житняк гребневидный + пырей	20-40	2,81	6,94	3,02	4,26
сизый + люцерна синегибридная	0-40	,	8,3	5,02	· · · · · · · · · · · · · · · · · · ·
	0-40	2,2			5,27
9.Кострец безостый + кострец пря-		1,64	2,60	5,67	3,30
мой + лядвенец рогатый	20-40	2,70	1,64	4,06	2,80
	0-40	2,2	2,1	4,9	3,05
10.Житняк гребневидный + пырей	0-20	2,53	3,27	10,57	5,46
сизый + лядвенец рогатый	20-40	2,91	7,17	4,70	4,93
•	0-40	2,7	5,2	7,6	5,19
11.0	0-20	5,03	1,63	2,78	3,15
11.Суданская трава	20-40	3,28	1,73	10,89	5,30
	0-40	4,2	1,7	6,8	4,22
2016	HCP05 0-20	0,15	0,49	0,60	
2017	20-40 HCP05 0-20	0,16 0,26	0,46 0,26	0,40 0,67	
2017	20-40	0,20	0,24	0,68	
	/()-4()	U / 3			
2018	HCP05 0-20	0,23	0,24	0,57	

Во второй срок определения наблюдается повышение численности бактерий практически в полтора раза. Наибольшая численность была отмечена в варианте житняк гребневидный + пырей сизый + люцерна синегибридная — 8,33 млн, самый низкий показатель отмечен в посевах суданской травы — 1,68 млн.

В третий срок определения численность бактерий возрастает вслед за повышением влажности почвы. В варианте житняк гребневидный + пырей сизый + эспарцет песчаный отмечен самый высокий показатель - 16,48 млн, а самый низкий в варианте кострец безостый + кострец прямой + люцерна синегибридная - 4,0 млн.

Анализ динамики численности бактерий за три года исследований показал сложный характер изменений, так как частота и амплитуда таких флуктуаций различаются в разных вариантах, а также в одном и том же варианте в разные сезоны года. Наиболее вероятный механизм природы этих колебаний можно объяснить тем, что изменение численности бактерий в почве происходит за счет внутренних механизмов регуляции микробного сообщества, путем образования физиологически активных веществ, ингибирующих рост микроорганизмов. Кроме этого изменения вызываются действиями факторов внешней среды, к которым относятся гидротермические условия и поступление питательных веществ.

Анализ почвы на видовой состав бактериальной микрофлоры показал, что основная часть представлена палочковидными бактериями рода Bacillus. Такое количество аммонифицирующих бактерий в почве связано, прежде всего, с их активным участием в процессе разложения растительных остатков.

В целом за три года исследований выявлено, что наибольшая численность бактерий отмечается в вариантах с посевами житняка гребневидного + пырея сизого с бобовыми культурами.

Численность актиномицетов в почве является косвенным показателем активности образования гумусовых веществ. Анализ данных по численности актиномицетов в среднем за 2016-2018 гг. (таблица 3) показывает, что численность колеблется от 0,04 до 1,25 млн КОЕ/1г а.с.п.

В первый срок определения численность актиномицетов довольно низкая, относительно большие значения отмечены в вариантах с посевами злаковых с люцерной 0,41-0,44 млн, самые низкие в чистых посевах житняка гребневидного — 0,17 млн.

Отмечено нарастание численности актиномицетов к середине лета во второй срок определения, так как в почве начинают накапливаться свежие растительные остатки. Максимальные значения отмечены в варианте кострец безостый + кострец прямой + эспарцет песчаный – 1,0 млн, минимальные значения – в посевах житняк гребневидный + пырей сизый – 0,44 млн.

Таблица 3 — Численность актиномицетов в среднем за 2016-2018 гг. (млн КОЕ/1г а.с.п.)

Слой поч- Сроки определения				Τ_	
Варианты	вы, см	1	2	3	В среднем
	0-20	0,31	0,79	0,66	0,59
1.Кострец безостый	20-40	0,04	0,58	0,17	0,26
	0-40	0,18	0,68	0,42	0,42
	0-20	0,17	0,39	0,42	0,32
2. Житняк гребневидный	20-40	0,18	0,46	0,77	0,47
2.житняк греоневидный	0-40	0,17	0,42	0,59	0,40
	0-20	0,36	0,37	0,50	0,41
3.Кострец безостый + кострец пря-	20-40	0,19	0,54	0,50	0,41
мой	0-40	0,28	0,45	0,50	0,41
	0-20	0,25	0,51	0,42	0,39
4.Житняк гребневидный + пырей	20-40	0,20	0,37	0,33	0,30
сизый	0-40	0,22	0,44	0,37	0,35
	0-20	0,30	1,25	0,37	0,64
5.Кострец безостый + кострец пря-	20-40	0,21	0,76	0,42	0,46
мой + эспарцет песчаный	0-40	0,25	1,00	0,39	0,55
	0-20	0,28	0,79	0,39	0,49
6.Житняк гребневидный + пырей	20-40	0,31	0,94	0,22	0,49
сизый + эспарцет песчаный	0-40	0,29	0,87	0,31	0,49
	0-20	0,58	0,65	0,72	0,65
7. Кострец безостый + кострец пря-	20-40	0,25	0,50	0,23	0,33
мой + люцерна синегибридная	0-40	0,41	0,58	0,48	0,49
	0-20	0,37	0,63	0,18	0,39
8.Житняк гребневидный + пырей	20-40	0,50	0,38	0,50	0,46
сизый + люцерна синегибридная	0-40	0,44	0,50	0,34	0,43
	0-20	0,42	0,28	0,14	0,28
9.Кострец безостый + кострец пря-	20-40	0,25	0,66	0,39	0,43
мой + лядвенец рогатый	0-40	0,33	0,47	0,27	0,36
	0-20	0,25	0,44	0,13	0,27
10.Житняк гребневидный + пырей	20-40	0,14	0,65	0,52	0,44
сизый + лядвенец рогатый	0-40	0,19	0,55	0,33	0,36
	0-20	0,28	0,53	0,37	0,39
11.Суданская трава	20-40	0,24	0,82	0,37	0,48
11.Суданская трава	0-40	0,26	0,67	0,37	0,44
2016	HCP05 0-20	0,02	0,08	0,03	
	20-40	0,02	0,09	0,03	
2017	HCP05 0-20	0,02	0,01	0,03	
	20-40	0,02	0,01	0,06	
2018	HCP05 0-20	0,04	0,03	0,01	
	20-40	0,03	0,05	0,01	

Осенью количество актиномицетов незначительно уменьшается. Наибольшая численность отмечена в чистых посевах житняка гребневидного -0.59 млн, самая низкая отмечена в варианте кострец безостый + кострец прямой + лядвенец рогатый -0.27 млн.

Анализ динамики актиномицетов в среднем по годам показывает, что численность актиномицетов с 2016 года по 2018 год снизилась почти в 4 раза.

Известно, что антибиотики образуются актиномицетами в почве при наличии питательного субстрата, они могут оказывать ограниченное влияние на формирование локальных группировок в микро очагах или в зонах скопления органического субстрата. Физиологическое значение антибиотических веществ для организмов, которые их продуцируют, все еще остается неясным. Являясь вторичными метаболитами, они, возможно, играют регуляторную роль в процессах роста и дифференциации популяции. Их токсическое действие на другие микроорганизмы является следствием подавления специфических биохимических реакций, необходимых для клетки.

Таким образом, разнообразие в почве микроорганизмов, различающихся по требовательности к источникам питания и условиям окружающей среды, способствует накоплению продуктов полураспада растительных остатков, которые и являются основой будущих гумусовых веществ.

За 3 года исследований наибольшая биогенность почвы наблюдается в вариантах с посевами житняк гребневидный + пырей сизый с бобовыми травами, а так же в чистых посевах костреца безостого.

Анализ результатов определения общей биогенности почвы показал, что на численность микрофлоры в посевах многолетних и однолетних трав влияют гидротермические условия года (рисунок 1).

Рисунок 1 - Динамика общей биогенности почвы в слое 0-40 см (млн КОЕ/1г а.с.п.) с показателями гидротермического коэффициента за 2016-2018 гг.

Периодичность роста микроорганизмов в почве отмечалась многими исследователями. Динамика численности микроорганизмов включает кратковременные и сезонные изменения как функции времени. Периоды пре-

имущественного развития микробного населения почв в течение года приходятся на разное время в почвах зонально-географического ряда, а также в почвах одного типа, но под разными растительными ассоциациями.

Для оценки естественного увлажнения территорий используется гидротермический коэффициент. Выявлены различия в активности роста и протекания микробиологических процессов по сезонам года в связи с различиями гидротермического режима и сроков поступления органических остатков в почву. Проведение корреляционного анализа между показателями влажности почвы и общей биогенности выявило, что численность микроорганизмов находилась в зависимости от степени увлажнения почвы (r=0,58).

3.2 Ферментативная активность почвы

Ферментативную активность почвы можно использовать в качестве диагностического показателя плодородия различных почв, потому что активность ферментов отражает не только биологические свойства почвы, но и их изменения под влиянием агроэкологических факторов.

В среднем за три года исследований наблюдается повышение активности полифенолоксидазы (ПФО) с 2016 года по 2018 год. Высокие показатели отмечены в вариантах кострец безостый -4,01, житняк гребневидный + пырей сизый -4,21 и с посевами суданской травы -5,31 мг пурпурогаллина/1г почвы. Однако в последнем варианте, не смотря на самые высокие показатели активности ПФО, наблюдается снижение данного показателя с 2016 по 2018 год.

В вариантах кострец безостый + кострец прямой, кострец безостый + кострец прямой + эспарцет песчаный наблюдалась самая низкая активность ПФО и составила 3,95 и 3,29 мг пурпурогаллина/1г почвы соответственно. Кроме этого анализ ПФО по годам исследований показывает, что активность данного фермента в меньшей степени зависит от гидротермического коэффициента.

Анализ динамики активности пероксидазы по годам показывает, что значения данного показателя наиболее вариабельны в каждый год исследования, однако в среднем самые высокие показатели отмечены в вариантах кострец безостый + кострец прямой - 6,17 и житняк гребневидный + пырей сизый + эспарцет песчаный - 5,74 мг пурпурогаллина/1 г почвы.

Корреляционный анализ активности ПФО и пероксидазы показал, что за три года исследований наблюдалась положительная корреляция (r=0,78) между этими показателями. Особенно заметно было отмечено в первый срок определения (r=0,83). В процессе исследований была выявлена положитель-

ная корреляция между активностью пероксидазы и численностью бактерий. Так в среднем за три года исследований во второй срок определения наблюдалась положительная корреляция (r=0,37) между двумя этими показателями. Однако в травостоях с чистыми и смешанными посевами только злаковых трав корреляционная связь между численностью бактерий и ферментом пероксидаза была значительно выше (r=0,58). Таким образом, в середине вегетации трансформация органического вещества, мобилизация макро- и микро-элементов в почвах осуществляются с помощью ферментов, как находящихся в почве в адсорбированном состоянии, так и в составе бактериальной микрофлоры.

Отношение активности полифенолоксидазы к активности пероксидазы является условным коэффициентом гумификации. Анализ коэффициента гумификации по срокам определения показывает, что во второй срок гумификация органического вещества происходит интенсивнее во всех вариантах, что может говорить о том, что засушливые условия в середине лета способствуют лучшей трансформации органического вещества.

В среднем за годы исследований высокие показатели коэффициента гумификации наблюдаются в вариантах кострец безостый и суданская трава. Однако анализ динамики данного показателя отдельно по годам (рисунок 2) показывает, что коэффициент гумификации в отмеченных вариантах, хоть и превышает показатели в среднем по всему опыту, с каждым годом значения коэффициента падают. Так в варианте кострец безостый в 2016 году коэффициент гумификации составил 1,83, в варианте суданская трава 2,44, а в 2018 году коэффициент составлял 1,35 и 0,88, соответственно.

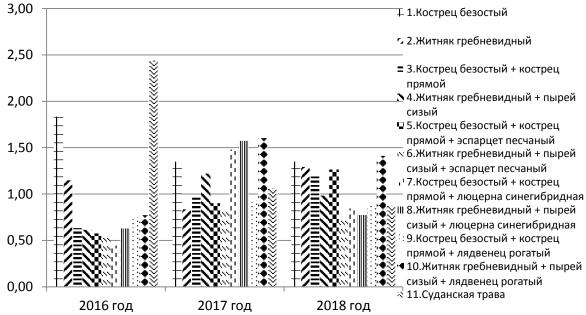


Рисунок 2 - Коэффициент гумификации в слое почвы 0-40 см в среднем за 2016-2018 гг.

В вариантах кострец безостый + кострец прямой, кострец безостый + кострец прямой + эспарцет песчаный, житняк гребневидный + пырей сизый + эспарцет песчаный и житняк гребневидный + пырей сизый + лядвенец рогатый наблюдался обратный эффект. В 2016 году коэффициент гумификации в отмеченных вариантах составлял 0,63, 0,57, 0,53 и 0,77, а в 2018 году коэффициент составлял уже 1,20, 1,26, 0,72 и 1,41, соответственно.

Такие данные свидетельствуют о том, что бобовые культуры способствуют повышению коэффициента гумификации за счет большего накопления органического вещества в почве.

3.3 Структура почвы

Коэффициент структурности в зависимости от срока определения колебался в верхних слоях почвы от 1,3 до 5,7, в слое 20-40 см от 0,6 до 7,8. Такая вариабельность связана с непрерывными процессами увлажнения и высыхания в почве. Значительные колебания проявляются в нижнем слое почвы и в среднем отклонения составляют 37,8%. Особенно значительные колебания были отмечены в варианте с посевами суданской травы (58%). В верхнем профиле почвы колебания составляют 24,4%, и также самый высокий показатель отмечен в варианте с суданской травой (41,4%).

Анализ данных по коэффициенту структурности свидетельствует, что за три года использования посевов с бобовыми травами существенно улучшились агрофизические свойства почвы. Уже начиная со второго года использования травостоя на опытных участках происходило увеличение коэффициента структурности, а к третьему году он возрос в среднем на 16,8 %. Стоит отметить, что в вариантах с посевами житняк гребневидный + пырей сизый + эспарцет песчаный, + люцерна синегибридная и + лядвенец рогатый процент возрастания коэффициента структурности с 2016 по 2018 год был 27,7 %, а в посевах кострец безостый + кострец прямой + эспарцет песчаный, + люцерна синегибридная и + лядвенец рогатый – 6 %.

В целом за три года исследований коэффициент структурности во всех вариантах имеет отличное агрегатное состояние. В среднем во всех вариантах с посевами многолетних трав произошло существенное улучшение структурного состояния, и только в варианте однолетние травы коэффициент структурности с 2,8 снизился до 1,2. Это объясняется, скорее всего, проведением механической обработки, что стало фактором разрушения структуры и обусловливает наибольшее объемные изменения, ведущие к образованию крупных структурных отдельностей.

3.4 Целлюлозолитическая активность почвы

За три года исследований активная деятельность аэробных целлюлозоразлагающих микроорганизмов наблюдалась в посевах житняк гребневидный + пырей сизый + люцерна синегибридная, житняк гребневидный + пырей сизый + лядвенец рогатый, и в вариантах кострец безостый + кострец прямой + лядвенец рогатый. В вариантах с бобовыми культурами целлюлозоразлагающая активность проходила более интенсивно, чем в вариантах с чистыми посевами злаковых трав. Так уже через неделю инкубации разложение целлюлозы в вариантах с посевами бобовых культур достигало 3-4 баллов. Полученные результаты свидетельствуют о том, что исследуемые почвы обладают довольно высокой потенциальной способностью к разложению органических веществ.

В целом за все время лабораторного исследования потенциальной целлюлозолитической способности почвы выявлено, что разложение клетчатки в чистых посевах злаковых трав проходит менее интенсивно, чем в смешанных посевах с бобовыми культурами. Это связано с тем, что целлюлозоразлагающие бактерии требуют достаточно высокого содержание минерального азота, а с введением бобовых культур в смешанные посевы эта потребность удовлетворяется.

3.5 Урожайность многолетних трав

В травосмесях с кострецом безостым урожайность зеленой массы на зеленый корм варьировалась от 9,25 до 13,14 т/га. Наибольшая урожайность была отмечена в варианте кострец безостый + кострец прямой + эспарцет песчаный. В травосмесях с житняком гребневидным урожайность зеленой массы на зеленый корм колебалась от 4,23 до 8,51 т/га.

На сено наибольшая урожайность зеленой массы была отмечена в травосмесях с добавлением костреца безостого. В варианте кострец безостый + кострец прямой + эспарцет песчаный урожайность достигала 18,71 т/га. В вариантах с житняком гребневидным урожайность зеленой массы на сено варьировалась от 9,44 до 12,22 т/га.

В посевах костреца безостого с бобовыми культурами урожайность зеленой массы на сенаж несколько уступала травосмесям с житняком гребневидным. В вариантах житняк гребневидный + пырей сизый + эспарцет песчаный была отмечена самая высокая урожайность — 24,5 т/га. В вариантах с люцерной синегибридной и лядвенцом рогатым урожайность также была выше в посевах с житняком гребневидным.

В процессе исследований была выявлена корреляция между общей биогенностью и урожайностью. Так в среднем за три года исследований

наблюдалась положительная корреляция (r=0,6) между двумя этими показателями. Это объясняется тем, что микробиологический пул почвы, вступая в процесс разложения органического вещества, в аэробных условиях осуществляет гидролиз органических и гумусовых веществ, а в анаэробных условиях вызывает процессы гниения и брожения, что приводит к образованию промежуточных продуктов, и количество элементов питания, доступных для растений, становится больше. Таким образом, происходит накопление доступных форм азота, фосфора и серы, что является одним из факторов повышения урожайности сельскохозяйственных культур.

4 АГРОЭНЕРГЕТИЧЕСКАЯ ОЦЕНКА И ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ

По результатам исследований выявлено, что самый высокий выход обменной энергии при уборке на зеленый корм был в варианте кострец безостый + кострец прямой + эспарцет песчаный – 39,42 ГДж/га, при уборке на сено – в варианте кострец безостый + кострец прямой + эспарцет песчаный – 56,13 ГДж/га. Высокий выход обменной энергии при уборке на сенаж был в варианте житняк гребневидный + пырей сизый + эспарцет песчаный – 73,50 ГДж/га. Таким образом, использование посевов кострец безостый + кострец прямой + эспарцет и житняк гребневидный + пырей сизый + эспарцет песчаный энергетически наиболее оправданы.

В результате проведенных расчетов экономической эффективности было установлено, что возделывание многолетних бобово-злаковых трав на зеленый корм, сено, сенаж рентабельно во всех вариантах.

При возделывании многолетних бобово-злаковых трав на зеленый корм в 2016-2018 гг. наибольшая прибыль была получена в варианте кострец безостый и составила 16217,8 руб./га. При возделывании многолетних бобовозлаковых трав на сено наибольший экономический эффект был получен в варианте житняк гребневидный + пырей сизый + эспарцет песчаный и составил 13181,6 руб./га. Рентабельность составила 90,7%. При возделывании многолетних бобово-злаковых трав на сенаж наибольший экономический эффект был получен в варианте житняк гребневидный + пырей сизый + эспарцет песчаный (прибыль составила 21745,4 руб./га).

ЗАКЛЮЧЕНИЕ

- 1. Наибольшая численность микромицетов отмечена в вариантах с чистыми посевами костреца безостого и житняка гребневидного. С 2016 по 2018 год численность микромицетов во всех вариантах выросла на 46 %. Основными представителями микромицетного состава являются роды Pennicilium, Aspergillus и Mucor. Отмечено уменьшение с 2016 по 2018 год патогенных микромицетов рода Fusarium. Наибольшая численность бактерий отмечается в вариантах с посевами житняка гребневидного + пырея сизого с бобовыми культурами. Основная часть бактериальной микрофлоры почвы представлена палочковидными бактериями рода Bacillus. Численность актиномицетов с 2016 года по 2018 год во всех вариантах снизилась в 4 раза. Высокая биогенность почвы наблюдается в вариантах с посевами житняк гребневидный + пырей сизый с бобовыми травами.
- 2. Активность полифенолоксидазы с 2016 года по 2018 год повышается в травостоях с многолетними травами, в варианте суданская трава наблюдается спад данного показателя. Высокие показатели полифенолоксидазы отмечены в вариантах кострец безостый, житняк гребневидный + пырей сизый. Высокие показатели активности пероксидазы отмечены в вариантах кострец безостый + кострец прямой и житняк гребневидный + пырей сизый + эспарцет песчаный. Корреляционный анализ активности ферментов полифенолоксидаза и пероксидаза показал, что наблюдалась положительная корреляция (г=0,78) между этими показателями. С 2016 по 2018 год в вариантах кострец безостый + кострец прямой + эспарцет, житняк гребневидный + пырей сизый + эспарцет песчаный и житняк гребневидный + пырей сизый + эспарцет песчаный и житняк гребневидный + пырей сизый + лядвенец рогатый наблюдался рост коэффициента гумификации. В середине лета гумификация органического вещества происходит интенсивнее.
- 3. Во всех вариантах с посевами многолетних трав произошло существенное улучшение структурного состояния, и только в варианте с посевом суданской травы коэффициент структурности с 2,8 уменьшился до 1,2.
- 4. Исследования потенциальной целлюлозолитической способности почвы показали, что микробиологические процессы в чистых посевах злаковых трав проходят менее интенсивно, чем в смешанных посевах с бобовыми культурами. Введение в травостои бобового компонента удовлетворяет потребность целлюлозоразлагающих микроорганизмов в минеральном азоте.
- 5. Урожайными травосмесями на зеленый корм, сено и сенаж оказались трехкомпонентные смеси. В варианте кострец безостый + кострец прямой + эспарцет песчаный наблюдается самая высокая урожайность зеленой массы

на зеленый корм и сено, а в варианте житняк гребневидный + пырей сизый + эспарцет песчаный высокая урожайность на сенаж. Была выявлена положительная корреляция (r=0,6) между общей биогенностью почвы и урожайностью многолетних трав.

6. Оценка агроэнергетических показателей выявила, что выращивание травостоев на зеленый корм, сено и сенаж целесообразно. Самый высокий выход обменной энергии при уборке на зеленый корм был в варианте кострец безостый + кострец прямой + эспарцет песчаный - 39,42 ГДж/га. При уборке на сено самый высокий выход обменной энергии был в варианте кострец безостый + кострец прямой + эспарцет песчаный - 56,13 ГДж/га. Самый высокий выход обменной энергии при уборке на сенаж был в варианте житняк гребневидный + пырей сизый + эспарцет песчаный - 73,50 ГДж/га. Установлено, что возделывание многолетних бобово-злаковых трав на зеленый корм, сено, сенаж рентабельно во всех вариантах. При возделывании суданской травы и многолетних бобово-злаковых трав на зеленый корм наибольшая прибыль была получена в варианте кострец безостый и составила 16217,8 руб./га. При возделывании многолетних бобово-злаковых трав на сено в 2016-2018 гг. наибольшая прибыль была получена в варианте житняк гребневидный + пырей сизый + эспарцет песчаный и составил 13181,6 руб./га. Рентабельность составила 90,7%. При возделывании многолетних бобово-злаковых трав на сенаж наибольшая прибыль была получена в варианте житняк гребневидный + пырей сизый + эспарцет песчаный (прибыль составила 21745,4 руб./га).

ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ

Для улучшения агробиологических показателей почвенного плодородия в условиях лесостепи Среднего Поволжья рекомендуются выращивать травостои, состоящие из костреца безостого + костреца прямого + эспарцета песчаного или из житняка гребневидного + пырея сизого + эспарцета песчаного.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ В рецензируемых изданиях:

- 1. Гусева, С.А. Влияние чистых и смешанных посевов Житняка гребневидного на биологическую активность почвы / С.А. Гусева, Г.К. Марковская, И. В. Карлова // Известия Оренбургского государственного аграрного университета». 2019. № 3 (77). С. 95-98.
- 2. Гусева, С.А. Влияние одновидовых и смешанных посевов многолетних трав на ферментативную активность почвы в условиях лесостепи Среднего Поволжья / С.А. Гусева, Г.К. Марковская // Известия Самарской государственной сельскохозяйственной академии. 2019. № 2. С. 27-34.

В других изданиях:

- 3. Гусева, С.А. Влияние многолетних и однолетних трав на микробиоту почвы / С.А. Гусева, Г.К. Марковская // Сборник научных трудов международной научно-практической конференции «Инновационные достижения науки и техники в АПК» ФГБОУ ВО Самарская ГСХА. Кинель, 2016. С. 123-127.
- 4. Гусева, С.А. Микробиота почвы в посевах многолетних и однолетних трав / С.А. Гусева, Г.К. Марковская // Периодический научный сборник "Современные тенденции развития науки и технологий" по материалам XXIII Международной научно-практической конференции. Белгород, 2017. № 2-3. С. 71-75.
- 5. Гусева, С.А. Численность и видовой состав микрофлоры почвы под посевами многолетних и однолетних трав / С.А. Гусева, Г.К. Марковская, А.Р. Демина // Международная научно-практическая конференция молодых ученых, аспирантов и студентов «Вклад молодых ученых в аграрную науку». Кинель, 2018. С. 6-9.
- 6. Гусева, С.А. Микробиологическая активность и видовой состав бактериальной микрофлоры почв под посевами многолетних и однолетних трав / С.А. Гусева, Г.К. Марковская // Международная научно-практическая конференция «Концепции фундаментальных и прикладных научных исследований» г. Екатеринбург, 2018. С. 79-82.
- 7. Гусева, С.А. Влияние посевов многолетних трав на микробиологическую активность почвы / С.А. Гусева, Г.К. Марковская // Инновационные пути решения актуальных проблем АПК России: материалы всероссийской (национальной) научно-практической конференции, 17 декабря 2018г. Персиановский: Донской ГАУ, 2018. С. 115-119.

8. Гусева, С.А. Численность и видовой состав микрофлоры почвы под посевами многолетних и однолетних трав / С.А. Гусева, Г.К. Марковская // Вестник Нижегородской государственной сельскохозяйственной академии. -2018.- № 1.- c.10-13.

ЛР №020444 от 10.03.98 г. Подписано в печать 14.02.2020 г. Формат 60×84 1/16. Печ.л. 1,0 Заказ № ____. Тираж 100 экз.

Редакционно-издательский отдел ФГБОУ ВО Самарского ГАУ 446442, Самарская область, г. Кинель, п.г.т. Усть-Кинельский, ул. Учебная, 2 Тел.: 8 939 754 04 86, доб. 112, E-mail: ssaariz@mail.ru